zuazo's picture
End of training
f576733 verified
metadata
language:
  - eu
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Whisper Large-V2 Basque
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_1 eu
          type: mozilla-foundation/common_voice_16_1
          config: eu
          split: test
          args: eu
        metrics:
          - name: Wer
            type: wer
            value: 7.720415819915585

Whisper Large-V2 Basque

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_16_1 eu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4206
  • Wer: 7.7204

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 40000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0112 10.04 1000 0.2182 10.1571
0.0052 20.08 2000 0.2372 9.6276
0.0017 30.11 3000 0.2417 9.0150
0.0022 40.15 4000 0.2341 8.8938
0.0023 50.19 5000 0.2451 8.9388
0.0006 60.23 6000 0.2517 8.4161
0.0006 70.26 7000 0.2499 8.0985
0.0008 80.3 8000 0.2548 8.3467
0.0004 90.34 9000 0.2498 7.9559
0.0003 100.38 10000 0.2489 7.6940
0.0 110.41 11000 0.2906 7.5455
0.0 120.45 12000 0.3027 7.4596
0.0 130.49 13000 0.3137 7.4517
0.0 140.53 14000 0.3243 7.4644
0.0 150.56 15000 0.3351 7.4762
0.0 160.6 16000 0.3459 7.4556
0.0 170.64 17000 0.3565 7.4605
0.0 180.68 18000 0.3689 7.4996
0.0 190.72 19000 0.3806 7.5934
0.0 200.75 20000 0.3912 7.6344
0.0 210.79 21000 0.4005 7.5485
0.0 220.83 22000 0.4102 7.6266
0.0079 230.87 23000 0.2467 9.1654
0.0 240.9 24000 0.3097 7.7615
0.0 250.94 25000 0.3311 7.7243
0.0 260.98 26000 0.3446 7.7028
0.0 271.02 27000 0.3551 7.7546
0.0 281.05 28000 0.3646 7.7986
0.0 291.09 29000 0.3729 7.7781
0.0 301.13 30000 0.3811 7.7634
0.0 311.17 31000 0.3878 7.7702
0.0 321.2 32000 0.3948 7.7722
0.0 331.24 33000 0.4003 7.7302
0.0 341.28 34000 0.4058 7.7312
0.0 351.32 35000 0.4108 7.7292
0.0 361.36 36000 0.4142 7.7321
0.0 371.39 37000 0.4170 7.7204
0.0 381.43 38000 0.4189 7.7253
0.0 391.47 39000 0.4202 7.7263
0.0 401.51 40000 0.4206 7.7204

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1