whisper-large-v2-es / README.md
zuazo's picture
End of training
09e0dac
metadata
language:
  - es
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Large-V2 Spanish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 es
          type: mozilla-foundation/common_voice_13_0
          config: es
          split: test
          args: es
        metrics:
          - name: Wer
            type: wer
            value: 4.89488506963824

Whisper Large-V2 Spanish

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_13_0 es dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2544
  • Wer: 4.8949

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0869 2.0 1000 0.1754 6.1516
0.0913 4.0 2000 0.1652 5.7500
0.051 6.0 3000 0.1643 5.7757
0.0391 8.0 4000 0.1881 5.6589
0.0104 10.0 5000 0.2026 5.6211
0.0806 12.01 6000 0.1741 5.7398
0.0077 14.01 7000 0.2119 5.6038
0.0357 16.01 8000 0.1776 5.6147
0.1087 18.01 9000 0.1868 5.5172
0.0401 20.01 10000 0.2014 5.4428
0.0334 22.01 11000 0.1751 5.2824
0.0071 24.01 12000 0.2295 5.2490
0.0374 26.01 13000 0.2098 5.2574
0.0023 28.01 14000 0.2498 5.0418
0.0025 30.01 15000 0.2311 4.9385
0.0006 32.01 16000 0.2544 4.8949
0.0009 34.02 17000 0.2691 5.1246
0.003 36.02 18000 0.2249 5.0277
0.0009 38.02 19000 0.2603 5.0373
0.0008 40.02 20000 0.2657 5.0225

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3