whisper-large-es / README.md
zuazo's picture
End of training
9b48181
metadata
language:
  - es
license: apache-2.0
base_model: openai/whisper-large
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Large Spanish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 es
          type: mozilla-foundation/common_voice_13_0
          config: es
          split: test
          args: es
        metrics:
          - name: Wer
            type: wer
            value: 5.126477928109984

Whisper Large Spanish

This model is a fine-tuned version of openai/whisper-large on the mozilla-foundation/common_voice_13_0 es dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2663
  • Wer: 5.1265

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0834 2.0 1000 0.1862 6.3852
0.0871 4.0 2000 0.1777 5.9175
0.039 6.0 3000 0.1780 5.7423
0.0265 8.0 4000 0.2121 5.7744
0.0059 10.0 5000 0.2219 5.8097
0.0855 12.01 6000 0.1839 5.9778
0.0037 14.01 7000 0.2273 5.8565
0.0293 16.01 8000 0.1965 5.8078
0.1174 18.01 9000 0.1984 5.8893
0.0355 20.01 10000 0.2136 5.8662
0.0279 22.01 11000 0.1882 5.4960
0.0043 24.01 12000 0.2444 5.3356
0.0302 26.01 13000 0.2223 5.4620
0.0011 28.01 14000 0.2603 5.5608
0.001 30.01 15000 0.2452 5.3087
0.0003 32.01 16000 0.2573 5.3523
0.0004 34.02 17000 0.2690 5.2952
0.0013 36.02 18000 0.2373 5.1438
0.0004 38.02 19000 0.2618 5.1361
0.0004 40.02 20000 0.2663 5.1265

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3