|
--- |
|
language: |
|
- es |
|
license: apache-2.0 |
|
base_model: openai/whisper-large |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_13_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Large Spanish |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_13_0 es |
|
type: mozilla-foundation/common_voice_13_0 |
|
config: es |
|
split: test |
|
args: es |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 5.126477928109984 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Large Spanish |
|
|
|
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co./openai/whisper-large) on the mozilla-foundation/common_voice_13_0 es dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2663 |
|
- Wer: 5.1265 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 20000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 0.0834 | 2.0 | 1000 | 0.1862 | 6.3852 | |
|
| 0.0871 | 4.0 | 2000 | 0.1777 | 5.9175 | |
|
| 0.039 | 6.0 | 3000 | 0.1780 | 5.7423 | |
|
| 0.0265 | 8.0 | 4000 | 0.2121 | 5.7744 | |
|
| 0.0059 | 10.0 | 5000 | 0.2219 | 5.8097 | |
|
| 0.0855 | 12.01 | 6000 | 0.1839 | 5.9778 | |
|
| 0.0037 | 14.01 | 7000 | 0.2273 | 5.8565 | |
|
| 0.0293 | 16.01 | 8000 | 0.1965 | 5.8078 | |
|
| 0.1174 | 18.01 | 9000 | 0.1984 | 5.8893 | |
|
| 0.0355 | 20.01 | 10000 | 0.2136 | 5.8662 | |
|
| 0.0279 | 22.01 | 11000 | 0.1882 | 5.4960 | |
|
| 0.0043 | 24.01 | 12000 | 0.2444 | 5.3356 | |
|
| 0.0302 | 26.01 | 13000 | 0.2223 | 5.4620 | |
|
| 0.0011 | 28.01 | 14000 | 0.2603 | 5.5608 | |
|
| 0.001 | 30.01 | 15000 | 0.2452 | 5.3087 | |
|
| 0.0003 | 32.01 | 16000 | 0.2573 | 5.3523 | |
|
| 0.0004 | 34.02 | 17000 | 0.2690 | 5.2952 | |
|
| 0.0013 | 36.02 | 18000 | 0.2373 | 5.1438 | |
|
| 0.0004 | 38.02 | 19000 | 0.2618 | 5.1361 | |
|
| 0.0004 | 40.02 | 20000 | 0.2663 | 5.1265 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|