|
--- |
|
language: |
|
- ca |
|
license: apache-2.0 |
|
base_model: openai/whisper-large |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_13_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Large Catalan |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_13_0 ca |
|
type: mozilla-foundation/common_voice_13_0 |
|
config: ca |
|
split: test |
|
args: ca |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 5.070020005715919 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Large Catalan |
|
|
|
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co./openai/whisper-large) on the mozilla-foundation/common_voice_13_0 ca dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1458 |
|
- Wer: 5.0700 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 20000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 0.1059 | 1.02 | 1000 | 0.1744 | 7.6342 | |
|
| 0.0159 | 3.02 | 2000 | 0.1943 | 7.3850 | |
|
| 0.0526 | 5.02 | 3000 | 0.1899 | 6.8522 | |
|
| 0.058 | 7.02 | 4000 | 0.1782 | 6.7802 | |
|
| 0.0161 | 9.02 | 5000 | 0.1995 | 6.6339 | |
|
| 0.065 | 11.02 | 6000 | 0.1563 | 6.4544 | |
|
| 0.082 | 13.02 | 7000 | 0.1789 | 6.0309 | |
|
| 0.0339 | 15.02 | 8000 | 0.1509 | 5.7554 | |
|
| 0.0581 | 17.01 | 9000 | 0.1573 | 6.0446 | |
|
| 0.0181 | 19.01 | 10000 | 0.1838 | 5.5913 | |
|
| 0.0188 | 21.01 | 11000 | 0.1610 | 5.4804 | |
|
| 0.0134 | 23.01 | 12000 | 0.1821 | 5.3953 | |
|
| 0.008 | 25.01 | 13000 | 0.1748 | 5.3804 | |
|
| 0.0071 | 27.01 | 14000 | 0.1858 | 5.4701 | |
|
| 0.0371 | 29.01 | 15000 | 0.1610 | 5.6599 | |
|
| 0.0076 | 31.01 | 16000 | 0.1571 | 5.1655 | |
|
| 0.0181 | 33.01 | 17000 | 0.1449 | 5.4558 | |
|
| 0.0522 | 35.0 | 18000 | 0.1340 | 5.8388 | |
|
| 0.0356 | 37.0 | 19000 | 0.1458 | 5.0700 | |
|
| 0.0132 | 39.0 | 20000 | 0.1310 | 5.1941 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|