wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5035
  • Wer: 0.3346

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1411 1.0 500 0.6675 0.6001
0.5668 2.01 1000 0.4699 0.4973
0.3773 3.01 1500 0.4475 0.4403
0.2696 4.02 2000 0.4162 0.4166
0.2165 5.02 2500 0.3809 0.4011
0.1849 6.02 3000 0.4120 0.3849
0.1542 7.03 3500 0.4436 0.3770
0.1385 8.03 4000 0.3977 0.3732
0.1224 9.04 4500 0.4530 0.3672
0.1233 10.04 5000 0.3949 0.3596
0.1078 11.04 5500 0.4616 0.3539
0.097 12.05 6000 0.4354 0.3697
0.0821 13.05 6500 0.4370 0.3643
0.0724 14.06 7000 0.4729 0.3587
0.0678 15.06 7500 0.5822 0.3742
0.0632 16.06 8000 0.4460 0.3513
0.0627 17.07 8500 0.5531 0.3537
0.0574 18.07 9000 0.5262 0.3575
0.0515 19.08 9500 0.4794 0.3488
0.0475 20.08 10000 0.4941 0.3458
0.0463 21.08 10500 0.4741 0.3377
0.0392 22.09 11000 0.5390 0.3381
0.0401 23.09 11500 0.4984 0.3413
0.0371 24.1 12000 0.5112 0.3460
0.0305 25.1 12500 0.5255 0.3418
0.0278 26.1 13000 0.5045 0.3389
0.0265 27.11 13500 0.4990 0.3371
0.0248 28.11 14000 0.5242 0.3362
0.0249 29.12 14500 0.5035 0.3346

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.