zkdeng commited on
Commit
67b2f21
1 Parent(s): 7d02d2f

Model save

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: 10-finetuned-ausSpiders
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # 10-finetuned-ausSpiders
20
+
21
+ This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co/zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0399
24
+ - Accuracy: 0.9896
25
+ - Precision: 0.9831
26
+ - Recall: 0.9577
27
+ - F1: 0.9683
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0005
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - distributed_type: multi-GPU
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 64
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.1
56
+ - num_epochs: 10
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
62
+ | 0.1696 | 1.0 | 767 | 0.1719 | 0.9477 | 0.9104 | 0.8399 | 0.8558 |
63
+ | 0.114 | 2.0 | 1534 | 0.0823 | 0.9754 | 0.9637 | 0.8941 | 0.9185 |
64
+ | 0.1065 | 3.0 | 2301 | 0.0857 | 0.9708 | 0.8828 | 0.8472 | 0.8572 |
65
+ | 0.112 | 4.0 | 3069 | 0.0781 | 0.9756 | 0.9361 | 0.8767 | 0.8803 |
66
+ | 0.1006 | 5.0 | 3836 | 0.0610 | 0.9821 | 0.9662 | 0.9362 | 0.9485 |
67
+ | 0.0838 | 6.0 | 4603 | 0.0571 | 0.9817 | 0.9397 | 0.9442 | 0.9380 |
68
+ | 0.0766 | 7.0 | 5370 | 0.0507 | 0.9832 | 0.9626 | 0.9175 | 0.9302 |
69
+ | 0.0523 | 8.0 | 6138 | 0.0398 | 0.9870 | 0.9470 | 0.9763 | 0.9577 |
70
+ | 0.0531 | 9.0 | 6905 | 0.0456 | 0.9892 | 0.9881 | 0.9556 | 0.9697 |
71
+ | 0.0419 | 10.0 | 7670 | 0.0399 | 0.9896 | 0.9831 | 0.9577 | 0.9683 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.33.3
77
+ - Pytorch 2.0.1+cu117
78
+ - Datasets 2.14.5
79
+ - Tokenizers 0.13.3