Edit model card

10-finetuned-ausSpiders

This model is a fine-tuned version of zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0399
  • Accuracy: 0.9896
  • Precision: 0.9831
  • Recall: 0.9577
  • F1: 0.9683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.1696 1.0 767 0.1719 0.9477 0.9104 0.8399 0.8558
0.114 2.0 1534 0.0823 0.9754 0.9637 0.8941 0.9185
0.1065 3.0 2301 0.0857 0.9708 0.8828 0.8472 0.8572
0.112 4.0 3069 0.0781 0.9756 0.9361 0.8767 0.8803
0.1006 5.0 3836 0.0610 0.9821 0.9662 0.9362 0.9485
0.0838 6.0 4603 0.0571 0.9817 0.9397 0.9442 0.9380
0.0766 7.0 5370 0.0507 0.9832 0.9626 0.9175 0.9302
0.0523 8.0 6138 0.0398 0.9870 0.9470 0.9763 0.9577
0.0531 9.0 6905 0.0456 0.9892 0.9881 0.9556 0.9697
0.0419 10.0 7670 0.0399 0.9896 0.9831 0.9577 0.9683

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
18
Inference API
Unable to determine this model's library. Check the docs .

Model tree for zkdeng/10-finetuned-ausSpiders