Edit model card

swin-tiny-patch4-window7-224-finetuned-vit

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5516
  • Crack: {'precision': 0.575, 'recall': 0.71875, 'f1-score': 0.6388888888888888, 'support': 32}
  • Environment - ground: {'precision': 0.9714285714285714, 'recall': 0.9714285714285714, 'f1-score': 0.9714285714285714, 'support': 35}
  • Environment - other: {'precision': 0.8571428571428571, 'recall': 0.8888888888888888, 'f1-score': 0.8727272727272727, 'support': 27}
  • Environment - sky: {'precision': 0.9761904761904762, 'recall': 0.9318181818181818, 'f1-score': 0.9534883720930233, 'support': 44}
  • Environment - vegetation: {'precision': 0.9791666666666666, 'recall': 0.9791666666666666, 'f1-score': 0.9791666666666666, 'support': 48}
  • Joint defect: {'precision': 0.9166666666666666, 'recall': 0.7096774193548387, 'f1-score': 0.7999999999999999, 'support': 31}
  • Loss of section: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2}
  • Spalling: {'precision': 0.6041666666666666, 'recall': 0.6041666666666666, 'f1-score': 0.6041666666666666, 'support': 48}
  • Vegetation: {'precision': 0.8309859154929577, 'recall': 0.8939393939393939, 'f1-score': 0.8613138686131386, 'support': 66}
  • Wall - grafitti: {'precision': 0.7, 'recall': 0.9545454545454546, 'f1-score': 0.8076923076923077, 'support': 22}
  • Wall - normal: {'precision': 0.6976744186046512, 'recall': 0.7317073170731707, 'f1-score': 0.7142857142857143, 'support': 41}
  • Wall - other: {'precision': 0.7910447761194029, 'recall': 0.7794117647058824, 'f1-score': 0.7851851851851852, 'support': 68}
  • Wall - stain: {'precision': 0.8222222222222222, 'recall': 0.6491228070175439, 'f1-score': 0.7254901960784313, 'support': 57}
  • Accuracy: 0.8061
  • Macro avg: {'precision': 0.7478222490154723, 'recall': 0.754817164008097, 'f1-score': 0.7472179777173742, 'support': 521}
  • Weighted avg: {'precision': 0.8107856771401473, 'recall': 0.8061420345489443, 'f1-score': 0.8050072232872345, 'support': 521}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Crack Environment - ground Environment - other Environment - sky Environment - vegetation Joint defect Loss of section Spalling Vegetation Wall - grafitti Wall - normal Wall - other Wall - stain Accuracy Macro avg Weighted avg
0.9193 1.0 146 0.7596 {'precision': 0.5681818181818182, 'recall': 0.78125, 'f1-score': 0.6578947368421052, 'support': 32} {'precision': 0.9444444444444444, 'recall': 0.9714285714285714, 'f1-score': 0.9577464788732395, 'support': 35} {'precision': 0.8846153846153846, 'recall': 0.8518518518518519, 'f1-score': 0.8679245283018868, 'support': 27} {'precision': 0.9736842105263158, 'recall': 0.8409090909090909, 'f1-score': 0.9024390243902439, 'support': 44} {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 48} {'precision': 0.7419354838709677, 'recall': 0.7419354838709677, 'f1-score': 0.7419354838709677, 'support': 31} {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2} {'precision': 0.5769230769230769, 'recall': 0.3125, 'f1-score': 0.4054054054054054, 'support': 48} {'precision': 0.75, 'recall': 0.9090909090909091, 'f1-score': 0.821917808219178, 'support': 66} {'precision': 0.5142857142857142, 'recall': 0.8181818181818182, 'f1-score': 0.6315789473684209, 'support': 22} {'precision': 0.7692307692307693, 'recall': 0.4878048780487805, 'f1-score': 0.5970149253731344, 'support': 41} {'precision': 0.7540983606557377, 'recall': 0.6764705882352942, 'f1-score': 0.7131782945736433, 'support': 68} {'precision': 0.6428571428571429, 'recall': 0.7894736842105263, 'f1-score': 0.7086614173228346, 'support': 57} 0.7562 {'precision': 0.7015581850454902, 'recall': 0.7062228366021391, 'f1-score': 0.692745926964697, 'support': 521} {'precision': 0.7618631381912654, 'recall': 0.7562380038387716, 'f1-score': 0.7479524876767193, 'support': 521}
0.7347 2.0 293 0.6495 {'precision': 0.5526315789473685, 'recall': 0.65625, 'f1-score': 0.6, 'support': 32} {'precision': 1.0, 'recall': 0.9714285714285714, 'f1-score': 0.9855072463768115, 'support': 35} {'precision': 0.8461538461538461, 'recall': 0.8148148148148148, 'f1-score': 0.830188679245283, 'support': 27} {'precision': 0.9761904761904762, 'recall': 0.9318181818181818, 'f1-score': 0.9534883720930233, 'support': 44} {'precision': 0.9591836734693877, 'recall': 0.9791666666666666, 'f1-score': 0.9690721649484536, 'support': 48} {'precision': 0.9130434782608695, 'recall': 0.6774193548387096, 'f1-score': 0.7777777777777777, 'support': 31} {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2} {'precision': 0.5306122448979592, 'recall': 0.5416666666666666, 'f1-score': 0.5360824742268041, 'support': 48} {'precision': 0.7058823529411765, 'recall': 0.9090909090909091, 'f1-score': 0.794701986754967, 'support': 66} {'precision': 0.6333333333333333, 'recall': 0.8636363636363636, 'f1-score': 0.7307692307692307, 'support': 22} {'precision': 0.5510204081632653, 'recall': 0.6585365853658537, 'f1-score': 0.6, 'support': 41} {'precision': 0.8095238095238095, 'recall': 0.75, 'f1-score': 0.7786259541984734, 'support': 68} {'precision': 0.9393939393939394, 'recall': 0.543859649122807, 'f1-score': 0.688888888888889, 'support': 57} 0.7678 {'precision': 0.7243822416365717, 'recall': 0.7152067510345803, 'f1-score': 0.7111617519445933, 'support': 521} {'precision': 0.7869554245446998, 'recall': 0.7677543186180422, 'f1-score': 0.7672943491004631, 'support': 521}
0.7515 2.99 438 0.5516 {'precision': 0.575, 'recall': 0.71875, 'f1-score': 0.6388888888888888, 'support': 32} {'precision': 0.9714285714285714, 'recall': 0.9714285714285714, 'f1-score': 0.9714285714285714, 'support': 35} {'precision': 0.8571428571428571, 'recall': 0.8888888888888888, 'f1-score': 0.8727272727272727, 'support': 27} {'precision': 0.9761904761904762, 'recall': 0.9318181818181818, 'f1-score': 0.9534883720930233, 'support': 44} {'precision': 0.9791666666666666, 'recall': 0.9791666666666666, 'f1-score': 0.9791666666666666, 'support': 48} {'precision': 0.9166666666666666, 'recall': 0.7096774193548387, 'f1-score': 0.7999999999999999, 'support': 31} {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2} {'precision': 0.6041666666666666, 'recall': 0.6041666666666666, 'f1-score': 0.6041666666666666, 'support': 48} {'precision': 0.8309859154929577, 'recall': 0.8939393939393939, 'f1-score': 0.8613138686131386, 'support': 66} {'precision': 0.7, 'recall': 0.9545454545454546, 'f1-score': 0.8076923076923077, 'support': 22} {'precision': 0.6976744186046512, 'recall': 0.7317073170731707, 'f1-score': 0.7142857142857143, 'support': 41} {'precision': 0.7910447761194029, 'recall': 0.7794117647058824, 'f1-score': 0.7851851851851852, 'support': 68} {'precision': 0.8222222222222222, 'recall': 0.6491228070175439, 'f1-score': 0.7254901960784313, 'support': 57} 0.8061 {'precision': 0.7478222490154723, 'recall': 0.754817164008097, 'f1-score': 0.7472179777173742, 'support': 521} {'precision': 0.8107856771401473, 'recall': 0.8061420345489443, 'f1-score': 0.8050072232872345, 'support': 521}

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ziauldin/swin-tiny-patch4-window7-224-finetuned-vit

Finetuned
(469)
this model

Evaluation results