gemma_summarizer_2 / README.md
zera09's picture
End of training
964716d verified
|
raw
history blame
1.63 kB
---
base_model: google/gemma-2-2b-it
library_name: peft
license: gemma
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: gemma_summarizer_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma_summarizer_2
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co./google/gemma-2-2b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9349
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.3746 | 0.3999 | 630 | 2.0370 |
| 2.364 | 0.7997 | 1260 | 1.9673 |
| 2.2345 | 1.1996 | 1890 | 1.9486 |
| 1.2331 | 1.5995 | 2520 | 1.9388 |
| 1.1334 | 1.9994 | 3150 | 1.9349 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.44.0
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1