Llama3-8b-chinese-chat-32k

训练方式

使用方法

和原版相同

from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "yuyijiong/Llama3-8B-Chinese-Chat-32k"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id, torch_dtype="auto", device_map="auto"
)

messages = [
    {"role": "user", "content": "写一首诗吧"},
]

input_ids = tokenizer.apply_chat_template(
    messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)

outputs = model.generate(
    input_ids,
    max_new_tokens=32768,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

Long-Context Performance

相比原始版本,拥有更强的长上下文能力

LongBench (en)

model hotpotqa multifieldqa_en passage_retrieval_en qmsum trec
llama3-8b-chinese-chat 45.88 50.56 68.00 22.52 73.00
llama3-8b-chinese-chat-32k 47.64 49.98 100.00 25.13 75.0

Longbench (zh)

model dureader multifieldqa_zh passage_retrieval_zh vcsum lsht
llama3-8b-chinese-chat 29.08 58.4 93.5 14.61 28.25
llama3-8b-chinese-chat-32k 32.31 58.66 82.5 16.15 38.5
Downloads last month
13
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train yuyijiong/Llama3-8B-Chinese-Chat-32k

Collection including yuyijiong/Llama3-8B-Chinese-Chat-32k