bert-base-multilingual-uncased-finetuned-classification

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1394
  • Accuracy: 0.9524

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 20 0.1029 0.9810
No log 2.0 40 0.1137 0.9524
No log 3.0 60 0.1153 0.9524
No log 4.0 80 0.1170 0.9524
No log 5.0 100 0.1208 0.9524
No log 6.0 120 0.1064 0.9810
No log 7.0 140 0.1344 0.9524
No log 8.0 160 0.1237 0.9524
No log 9.0 180 0.1146 0.9524
No log 10.0 200 0.1330 0.9524
No log 11.0 220 0.1285 0.9524
No log 12.0 240 0.1291 0.9524
No log 13.0 260 0.1335 0.9524
No log 14.0 280 0.1380 0.9524
No log 15.0 300 0.1394 0.9524

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
8
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yuridrcosta/bert-base-multilingual-uncased-finetuned-classification

Finetuned
(1632)
this model