yujiepan/dreamshaper-8-lcm-openvino
This model applies latent-consistency/lcm-lora-sdv1-5 on base model Lykon/dreamshaper-8, and is converted as OpenVINO format.
Usage
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
pipeline = OVStableDiffusionPipeline.from_pretrained(
'yujiepan/dreamshaper-8-lcm-openvino',
device='CPU',
)
prompt = 'cute dog typing at a laptop, 4k, details'
images = pipeline(prompt=prompt, num_inference_steps=8, guidance_scale=1.0).images
TODO
- The fp16 base model is converted to openvino in fp32, which is unnecessary.
Scripts
The model is generated by the following codes:
import torch
from diffusers import AutoPipelineForText2Image, LCMScheduler
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
base_model_id = "Lykon/dreamshaper-8"
adapter_id = "latent-consistency/lcm-lora-sdv1-5"
save_torch_folder = './dreamshaper-8-lcm'
save_ov_folder = './dreamshaper-8-lcm-openvino'
torch_pipeline = AutoPipelineForText2Image.from_pretrained(
base_model_id, torch_dtype=torch.float16, variant="fp16")
torch_pipeline.scheduler = LCMScheduler.from_config(
torch_pipeline.scheduler.config)
# load and fuse lcm lora
torch_pipeline.load_lora_weights(adapter_id)
torch_pipeline.fuse_lora()
torch_pipeline.save_pretrained(save_torch_folder)
ov_pipeline = OVStableDiffusionPipeline.from_pretrained(
save_torch_folder,
device='CPU',
export=True,
)
ov_pipeline.save_pretrained(save_ov_folder)
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yujiepan/dreamshaper-8-lcm-openvino
Base model
runwayml/stable-diffusion-v1-5