llm-jp-3-13b-instruct-lora-multinode-500k

This model is a fine-tuned version of llm-jp/llm-jp-3-13b-instruct on the generator dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 56
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 1792
  • total_eval_batch_size: 448
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3

Training results

Framework versions

  • PEFT 0.7.2.dev0
  • Transformers 4.36.2
  • Pytorch 2.5.1+cu124
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for yt765/llm-jp-3-13b-instruct-lora-multinode-500k

Adapter
(9)
this model