all-MiniLM-L6-v3-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'momax q led desk lamp charging base',
'JUTE tote',
'sephora selftanning body mist',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 2e-05num_train_epochs
: 4warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0040 | 500 | 11.0937 | - |
0.0080 | 1000 | 10.4099 | - |
0.0120 | 1500 | 9.5203 | - |
0.0160 | 2000 | 8.5096 | - |
0.0200 | 2500 | 7.7136 | - |
0.0240 | 3000 | 7.0622 | - |
0.0280 | 3500 | 6.656 | - |
0.0320 | 4000 | 6.4973 | - |
0.0360 | 4500 | 6.4192 | - |
0.0400 | 5000 | 6.3691 | - |
0.0440 | 5500 | 6.3185 | - |
0.0480 | 6000 | 6.3008 | - |
0.0520 | 6500 | 6.2712 | - |
0.0560 | 7000 | 6.1812 | - |
0.0600 | 7500 | 6.1804 | - |
0.0640 | 8000 | 6.2158 | - |
0.0680 | 8500 | 6.1458 | - |
0.0720 | 9000 | 6.1272 | - |
0.0760 | 9500 | 6.1191 | - |
0.0800 | 10000 | 6.1326 | - |
0.0839 | 10500 | 6.1149 | - |
0.0879 | 11000 | 6.113 | - |
0.0919 | 11500 | 6.0837 | - |
0.0959 | 12000 | 6.0694 | - |
0.0999 | 12500 | 6.0823 | - |
0.1039 | 13000 | 6.0237 | - |
0.1079 | 13500 | 6.0599 | - |
0.1119 | 14000 | 6.0395 | - |
0.1159 | 14500 | 6.0278 | - |
0.1199 | 15000 | 6.0407 | - |
0.1239 | 15500 | 5.9927 | - |
0.1279 | 16000 | 6.007 | - |
0.1319 | 16500 | 5.9956 | - |
0.1359 | 17000 | 5.9771 | - |
0.1399 | 17500 | 5.9549 | - |
0.1439 | 18000 | 6.0142 | - |
0.1479 | 18500 | 5.9834 | - |
0.1519 | 19000 | 5.9187 | - |
0.1559 | 19500 | 5.9599 | - |
0.1599 | 20000 | 5.9338 | - |
0.1639 | 20500 | 5.9025 | - |
0.1679 | 21000 | 5.9289 | - |
0.1719 | 21500 | 5.9003 | - |
0.1759 | 22000 | 5.9284 | - |
0.1799 | 22500 | 5.9084 | - |
0.1839 | 23000 | 5.9171 | - |
0.1879 | 23500 | 5.9341 | - |
0.1919 | 24000 | 5.9336 | - |
0.1959 | 24500 | 5.8839 | - |
0.1999 | 25000 | 5.9089 | - |
0.2039 | 25500 | 5.8855 | - |
0.2079 | 26000 | 5.8739 | - |
0.2119 | 26500 | 5.8558 | - |
0.2159 | 27000 | 5.8715 | - |
0.2199 | 27500 | 5.8257 | - |
0.2239 | 28000 | 5.8951 | - |
0.2279 | 28500 | 5.8489 | - |
0.2319 | 29000 | 5.853 | - |
0.2359 | 29500 | 5.865 | - |
0.2399 | 30000 | 5.8399 | - |
0.2438 | 30500 | 5.8356 | - |
0.2478 | 31000 | 5.828 | - |
0.2518 | 31500 | 5.8467 | - |
0.2558 | 32000 | 5.856 | - |
0.2598 | 32500 | 5.8059 | - |
0.2638 | 33000 | 5.8476 | - |
0.2678 | 33500 | 5.7928 | - |
0.2718 | 34000 | 5.8001 | - |
0.2758 | 34500 | 5.8136 | - |
0.2798 | 35000 | 5.8163 | - |
0.2838 | 35500 | 5.7882 | - |
0.2878 | 36000 | 5.7785 | - |
0.2918 | 36500 | 5.7778 | - |
0.2958 | 37000 | 5.7418 | - |
0.2998 | 37500 | 5.8014 | - |
0.3038 | 38000 | 5.8088 | - |
0.3078 | 38500 | 5.7458 | - |
0.3118 | 39000 | 5.7981 | - |
0.3158 | 39500 | 5.7693 | - |
0.3198 | 40000 | 5.7612 | - |
0.3238 | 40500 | 5.7782 | - |
0.3278 | 41000 | 5.7576 | - |
0.3318 | 41500 | 5.7524 | - |
0.3358 | 42000 | 5.73 | - |
0.3398 | 42500 | 5.7805 | - |
0.3438 | 43000 | 5.7296 | - |
0.3478 | 43500 | 5.7579 | - |
0.3518 | 44000 | 5.7592 | - |
0.3558 | 44500 | 5.7467 | - |
0.3598 | 45000 | 5.7158 | - |
0.3638 | 45500 | 5.731 | - |
0.3678 | 46000 | 5.7482 | - |
0.3718 | 46500 | 5.7176 | - |
0.3758 | 47000 | 5.7273 | - |
0.3798 | 47500 | 5.6963 | - |
0.3838 | 48000 | 5.6946 | - |
0.3878 | 48500 | 5.7576 | - |
0.3918 | 49000 | 5.6921 | - |
0.3958 | 49500 | 5.6965 | - |
0.3998 | 50000 | 5.7335 | - |
0.4038 | 50500 | 5.7064 | - |
0.4077 | 51000 | 5.6945 | - |
0.4117 | 51500 | 5.7319 | - |
0.4157 | 52000 | 5.735 | - |
0.4197 | 52500 | 5.6942 | - |
0.4237 | 53000 | 5.7037 | - |
0.4277 | 53500 | 5.6724 | - |
0.4317 | 54000 | 5.6971 | - |
0.4357 | 54500 | 5.7163 | - |
0.4397 | 55000 | 5.6842 | - |
0.4437 | 55500 | 5.6924 | - |
0.4477 | 56000 | 5.6814 | - |
0.4517 | 56500 | 5.671 | - |
0.4557 | 57000 | 5.6563 | - |
0.4597 | 57500 | 5.6385 | - |
0.4637 | 58000 | 5.6595 | - |
0.4677 | 58500 | 5.6744 | - |
0.4717 | 59000 | 5.6285 | - |
0.4757 | 59500 | 5.6202 | - |
0.4797 | 60000 | 5.6484 | - |
0.4837 | 60500 | 5.647 | - |
0.4877 | 61000 | 5.6641 | - |
0.4917 | 61500 | 5.6681 | - |
0.4957 | 62000 | 5.6344 | - |
0.4997 | 62500 | 5.6253 | - |
0.5037 | 63000 | 5.6258 | - |
0.5077 | 63500 | 5.6525 | - |
0.5117 | 64000 | 5.5764 | - |
0.5157 | 64500 | 5.6265 | - |
0.5197 | 65000 | 5.6201 | - |
0.5237 | 65500 | 5.6297 | - |
0.5277 | 66000 | 5.6133 | - |
0.5317 | 66500 | 5.5981 | - |
0.5357 | 67000 | 5.6085 | - |
0.5397 | 67500 | 5.6128 | - |
0.5437 | 68000 | 5.6237 | - |
0.5477 | 68500 | 5.6005 | - |
0.5517 | 69000 | 5.6156 | - |
0.5557 | 69500 | 5.5723 | - |
0.5597 | 70000 | 5.5817 | - |
0.5637 | 70500 | 5.6186 | - |
0.5677 | 71000 | 5.588 | - |
0.5716 | 71500 | 5.5219 | - |
0.5756 | 72000 | 5.5718 | - |
0.5796 | 72500 | 5.5878 | - |
0.5836 | 73000 | 5.5702 | - |
0.5876 | 73500 | 5.5274 | - |
0.5916 | 74000 | 5.5608 | - |
0.5956 | 74500 | 5.5328 | - |
0.5996 | 75000 | 5.5848 | - |
0.6036 | 75500 | 5.5713 | - |
0.6076 | 76000 | 5.5529 | - |
0.6116 | 76500 | 5.5224 | - |
0.6156 | 77000 | 5.57 | - |
0.6196 | 77500 | 5.5874 | - |
0.6236 | 78000 | 5.5441 | - |
0.6276 | 78500 | 5.5127 | - |
0.6316 | 79000 | 5.5557 | - |
0.6356 | 79500 | 5.5101 | - |
0.6396 | 80000 | 5.5153 | - |
0.6436 | 80500 | 5.4958 | - |
0.6476 | 81000 | 5.518 | - |
0.6516 | 81500 | 5.5022 | - |
0.6556 | 82000 | 5.5013 | - |
0.6596 | 82500 | 5.4832 | - |
0.6636 | 83000 | 5.5174 | - |
0.6676 | 83500 | 5.5052 | - |
0.6716 | 84000 | 5.5315 | - |
0.6756 | 84500 | 5.533 | - |
0.6796 | 85000 | 5.4937 | - |
0.6836 | 85500 | 5.4697 | - |
0.6876 | 86000 | 5.5085 | - |
0.6916 | 86500 | 5.4901 | - |
0.6956 | 87000 | 5.4667 | - |
0.6996 | 87500 | 5.5047 | - |
0.7036 | 88000 | 5.495 | - |
0.7076 | 88500 | 5.4677 | - |
0.7116 | 89000 | 5.4779 | - |
0.7156 | 89500 | 5.4467 | - |
0.7196 | 90000 | 5.4772 | - |
0.7236 | 90500 | 5.4988 | - |
0.7276 | 91000 | 5.4832 | - |
0.7315 | 91500 | 5.4669 | - |
0.7355 | 92000 | 5.447 | - |
0.7395 | 92500 | 5.4725 | - |
0.7435 | 93000 | 5.458 | - |
0.7475 | 93500 | 5.4872 | - |
0.7515 | 94000 | 5.4491 | - |
0.7555 | 94500 | 5.4729 | - |
0.7595 | 95000 | 5.4506 | - |
0.7635 | 95500 | 5.4585 | - |
0.7675 | 96000 | 5.4173 | - |
0.7715 | 96500 | 5.4371 | - |
0.7755 | 97000 | 5.4433 | - |
0.7795 | 97500 | 5.4664 | - |
0.7835 | 98000 | 5.4302 | - |
0.7875 | 98500 | 5.4389 | - |
0.7915 | 99000 | 5.4451 | - |
0.7955 | 99500 | 5.4432 | - |
0.7995 | 100000 | 5.4322 | - |
0.8035 | 100500 | 5.4166 | - |
0.8075 | 101000 | 5.4405 | - |
0.8115 | 101500 | 5.4114 | - |
0.8155 | 102000 | 5.4646 | - |
0.8195 | 102500 | 5.442 | - |
0.8235 | 103000 | 5.4145 | - |
0.8275 | 103500 | 5.432 | - |
0.8315 | 104000 | 5.4458 | - |
0.8355 | 104500 | 5.4044 | - |
0.8395 | 105000 | 5.4376 | - |
0.8435 | 105500 | 5.432 | - |
0.8475 | 106000 | 5.4196 | - |
0.8515 | 106500 | 5.4193 | - |
0.8555 | 107000 | 5.4272 | - |
0.8595 | 107500 | 5.4235 | - |
0.8635 | 108000 | 5.4332 | - |
0.8675 | 108500 | 5.4434 | - |
0.8715 | 109000 | 5.3986 | - |
0.8755 | 109500 | 5.3906 | - |
0.8795 | 110000 | 5.3775 | - |
0.8835 | 110500 | 5.3805 | - |
0.8875 | 111000 | 5.404 | - |
0.8915 | 111500 | 5.3914 | - |
0.8954 | 112000 | 5.4238 | - |
0.8994 | 112500 | 5.4133 | - |
0.9034 | 113000 | 5.3882 | - |
0.9074 | 113500 | 5.4108 | - |
0.9114 | 114000 | 5.4203 | - |
0.9154 | 114500 | 5.3607 | - |
0.9194 | 115000 | 5.3691 | - |
0.9234 | 115500 | 5.3354 | - |
0.9274 | 116000 | 5.3859 | - |
0.9314 | 116500 | 5.3877 | - |
0.9354 | 117000 | 5.3874 | - |
0.9394 | 117500 | 5.3595 | - |
0.9434 | 118000 | 5.3769 | - |
0.9474 | 118500 | 5.3635 | - |
0.9514 | 119000 | 5.3546 | - |
0.9554 | 119500 | 5.3652 | - |
0.9594 | 120000 | 5.3204 | - |
0.9634 | 120500 | 5.3674 | - |
0.9674 | 121000 | 5.3512 | - |
0.9714 | 121500 | 5.3539 | - |
0.9754 | 122000 | 5.3259 | - |
0.9794 | 122500 | 5.3189 | - |
0.9834 | 123000 | 5.342 | - |
0.9874 | 123500 | 5.3491 | - |
0.9914 | 124000 | 5.3455 | - |
0.9954 | 124500 | 5.3106 | - |
0.9994 | 125000 | 5.2932 | - |
1.0034 | 125500 | 5.3176 | - |
1.0074 | 126000 | 5.3073 | - |
1.0114 | 126500 | 5.3194 | - |
1.0154 | 127000 | 5.2482 | - |
1.0194 | 127500 | 5.2502 | - |
1.0234 | 128000 | 5.3199 | - |
1.0274 | 128500 | 5.2374 | - |
1.0314 | 129000 | 5.2641 | - |
1.0354 | 129500 | 5.2663 | - |
1.0394 | 130000 | 5.2887 | - |
1.0434 | 130500 | 5.2731 | - |
1.0474 | 131000 | 5.2297 | - |
1.0514 | 131500 | 5.2704 | - |
1.0553 | 132000 | 5.2723 | - |
1.0593 | 132500 | 5.2846 | - |
1.0633 | 133000 | 5.2857 | - |
1.0673 | 133500 | 5.2984 | - |
1.0713 | 134000 | 5.2492 | - |
1.0753 | 134500 | 5.2847 | - |
1.0793 | 135000 | 5.2376 | - |
1.0833 | 135500 | 5.2299 | - |
1.0873 | 136000 | 5.2214 | - |
1.0913 | 136500 | 5.2429 | - |
1.0953 | 137000 | 5.2232 | - |
1.0993 | 137500 | 5.261 | - |
1.1033 | 138000 | 5.2394 | - |
1.1073 | 138500 | 5.2877 | - |
1.1113 | 139000 | 5.1936 | - |
1.1153 | 139500 | 5.2483 | - |
1.1193 | 140000 | 5.2412 | - |
1.1233 | 140500 | 5.1841 | - |
1.1273 | 141000 | 5.2741 | - |
1.1313 | 141500 | 5.1711 | - |
1.1353 | 142000 | 5.2154 | - |
1.1393 | 142500 | 5.2667 | - |
1.1433 | 143000 | 5.217 | - |
1.1473 | 143500 | 5.261 | - |
1.1513 | 144000 | 5.2169 | - |
1.1553 | 144500 | 5.2471 | - |
1.1593 | 145000 | 5.2486 | - |
1.1633 | 145500 | 5.2252 | - |
1.1673 | 146000 | 5.2488 | - |
1.1713 | 146500 | 5.184 | - |
1.1753 | 147000 | 5.2547 | - |
1.1793 | 147500 | 5.207 | - |
1.1833 | 148000 | 5.2087 | - |
1.1873 | 148500 | 5.2478 | - |
1.1913 | 149000 | 5.2409 | - |
1.1953 | 149500 | 5.1968 | - |
1.1993 | 150000 | 5.182 | - |
1.2033 | 150500 | 5.1807 | - |
1.2073 | 151000 | 5.1927 | - |
1.2113 | 151500 | 5.1859 | - |
1.2153 | 152000 | 5.1874 | - |
1.2192 | 152500 | 5.2234 | - |
1.2232 | 153000 | 5.1858 | - |
1.2272 | 153500 | 5.2104 | - |
1.2312 | 154000 | 5.2259 | - |
1.2352 | 154500 | 5.2022 | - |
1.2392 | 155000 | 5.2162 | - |
1.2432 | 155500 | 5.1691 | - |
1.2472 | 156000 | 5.1845 | - |
1.2512 | 156500 | 5.1577 | - |
1.2552 | 157000 | 5.1921 | - |
1.2592 | 157500 | 5.2277 | - |
1.2632 | 158000 | 5.2049 | - |
1.2672 | 158500 | 5.1672 | - |
1.2712 | 159000 | 5.2376 | - |
1.2752 | 159500 | 5.1943 | - |
1.2792 | 160000 | 5.1384 | - |
1.2832 | 160500 | 5.1651 | - |
1.2872 | 161000 | 5.1992 | - |
1.2912 | 161500 | 5.1707 | - |
1.2952 | 162000 | 5.1796 | - |
1.2992 | 162500 | 5.0851 | - |
1.3032 | 163000 | 5.202 | - |
1.3072 | 163500 | 5.1546 | - |
1.3112 | 164000 | 5.1962 | - |
1.3152 | 164500 | 5.1498 | - |
1.3192 | 165000 | 5.1587 | - |
1.3232 | 165500 | 5.1674 | - |
1.3272 | 166000 | 5.1375 | - |
1.3312 | 166500 | 5.1558 | - |
1.3352 | 167000 | 5.1298 | - |
1.3392 | 167500 | 5.1469 | - |
1.3432 | 168000 | 5.0647 | - |
1.3472 | 168500 | 5.1455 | - |
1.3512 | 169000 | 5.1312 | - |
1.3552 | 169500 | 5.1067 | - |
1.3592 | 170000 | 5.109 | - |
1.3632 | 170500 | 5.1282 | - |
1.3672 | 171000 | 5.1348 | - |
1.3712 | 171500 | 5.1415 | - |
1.3752 | 172000 | 5.0964 | - |
1.3792 | 172500 | 5.1503 | - |
1.3831 | 173000 | 5.1629 | - |
1.3871 | 173500 | 5.105 | - |
1.3911 | 174000 | 5.0606 | - |
1.3951 | 174500 | 5.151 | - |
1.3991 | 175000 | 5.1262 | - |
1.4031 | 175500 | 5.1856 | - |
1.4071 | 176000 | 5.1216 | - |
1.4111 | 176500 | 5.1419 | - |
1.4151 | 177000 | 5.121 | - |
1.4191 | 177500 | 5.1393 | - |
1.4231 | 178000 | 5.1029 | - |
1.4271 | 178500 | 5.0734 | - |
1.4311 | 179000 | 5.1087 | - |
1.4351 | 179500 | 5.1404 | - |
1.4391 | 180000 | 5.1152 | - |
1.4431 | 180500 | 5.1041 | - |
1.4471 | 181000 | 5.0889 | - |
1.4511 | 181500 | 5.1602 | - |
1.4551 | 182000 | 5.1193 | - |
1.4591 | 182500 | 5.092 | - |
1.4631 | 183000 | 5.0901 | - |
1.4671 | 183500 | 5.0899 | - |
1.4711 | 184000 | 5.1426 | - |
1.4751 | 184500 | 5.0812 | - |
1.4791 | 185000 | 5.0964 | - |
1.4831 | 185500 | 5.0828 | - |
1.4871 | 186000 | 5.116 | - |
1.4911 | 186500 | 5.1069 | - |
1.4951 | 187000 | 5.0598 | - |
1.4991 | 187500 | 5.0734 | - |
1.5031 | 188000 | 5.0516 | - |
1.5071 | 188500 | 5.1049 | - |
1.5111 | 189000 | 5.0636 | - |
1.5151 | 189500 | 5.0715 | - |
1.5191 | 190000 | 5.0757 | - |
1.5231 | 190500 | 5.0947 | - |
1.5271 | 191000 | 5.0433 | - |
1.5311 | 191500 | 5.1079 | - |
1.5351 | 192000 | 5.0872 | - |
1.5391 | 192500 | 5.016 | - |
1.5430 | 193000 | 5.0627 | - |
1.5470 | 193500 | 5.0841 | - |
1.5510 | 194000 | 5.1012 | - |
1.5550 | 194500 | 5.0415 | - |
1.5590 | 195000 | 5.0871 | - |
1.5630 | 195500 | 5.0678 | - |
1.5670 | 196000 | 5.0399 | - |
1.5710 | 196500 | 5.0794 | - |
1.5750 | 197000 | 5.0639 | - |
1.5790 | 197500 | 5.0335 | - |
1.5830 | 198000 | 5.0606 | - |
1.5870 | 198500 | 5.1059 | - |
1.5910 | 199000 | 5.0426 | - |
1.5950 | 199500 | 5.0185 | - |
1.5990 | 200000 | 5.0194 | - |
1.6030 | 200500 | 5.0887 | - |
1.6070 | 201000 | 5.004 | - |
1.6110 | 201500 | 5.0834 | - |
1.6150 | 202000 | 5.0363 | - |
1.6190 | 202500 | 5.0819 | - |
1.6230 | 203000 | 5.0344 | - |
1.6270 | 203500 | 5.107 | - |
1.6310 | 204000 | 5.0201 | - |
1.6350 | 204500 | 5.0305 | - |
1.6390 | 205000 | 5.0074 | - |
1.6430 | 205500 | 5.0507 | - |
1.6470 | 206000 | 5.0419 | - |
1.6510 | 206500 | 5.0099 | - |
1.6550 | 207000 | 5.0673 | - |
1.6590 | 207500 | 5.0449 | - |
1.6630 | 208000 | 4.9631 | - |
1.6670 | 208500 | 5.0013 | - |
1.6710 | 209000 | 5.02 | - |
1.6750 | 209500 | 5.032 | - |
1.6790 | 210000 | 4.9984 | - |
1.6830 | 210500 | 4.987 | - |
1.6870 | 211000 | 5.0095 | - |
1.6910 | 211500 | 5.0801 | - |
1.6950 | 212000 | 5.0061 | - |
1.6990 | 212500 | 5.0193 | - |
1.7030 | 213000 | 5.0453 | - |
1.7069 | 213500 | 4.991 | - |
1.7109 | 214000 | 5.0149 | - |
1.7149 | 214500 | 5.0181 | - |
1.7189 | 215000 | 5.0341 | - |
1.7229 | 215500 | 4.9987 | - |
1.7269 | 216000 | 4.9864 | - |
1.7309 | 216500 | 4.993 | - |
1.7349 | 217000 | 4.9888 | - |
1.7389 | 217500 | 5.0125 | - |
1.7429 | 218000 | 5.0023 | - |
1.7469 | 218500 | 5.0205 | - |
1.7509 | 219000 | 5.0141 | - |
1.7549 | 219500 | 5.0071 | - |
1.7589 | 220000 | 4.9684 | - |
1.7629 | 220500 | 4.9898 | - |
1.7669 | 221000 | 4.9889 | - |
1.7709 | 221500 | 4.9894 | - |
1.7749 | 222000 | 4.989 | - |
1.7789 | 222500 | 4.9179 | - |
1.7829 | 223000 | 4.9818 | - |
1.7869 | 223500 | 5.0056 | - |
1.7909 | 224000 | 4.9475 | - |
1.7949 | 224500 | 5.0104 | - |
1.7989 | 225000 | 4.9827 | - |
1.8029 | 225500 | 4.9716 | - |
1.8069 | 226000 | 4.9924 | - |
1.8109 | 226500 | 5.0384 | - |
1.8149 | 227000 | 4.9853 | - |
1.8189 | 227500 | 4.9858 | - |
1.8229 | 228000 | 4.9423 | - |
1.8269 | 228500 | 4.9476 | - |
1.8309 | 229000 | 4.9631 | - |
1.8349 | 229500 | 4.9819 | - |
1.8389 | 230000 | 4.9464 | - |
1.8429 | 230500 | 4.9688 | - |
1.8469 | 231000 | 4.9569 | - |
1.8509 | 231500 | 4.9515 | - |
1.8549 | 232000 | 4.9447 | - |
1.8589 | 232500 | 4.9845 | - |
1.8629 | 233000 | 4.9834 | - |
1.8669 | 233500 | 4.9545 | - |
1.8708 | 234000 | 4.9452 | - |
1.8748 | 234500 | 4.9623 | - |
1.8788 | 235000 | 4.9869 | - |
1.8828 | 235500 | 4.9603 | - |
1.8868 | 236000 | 4.9504 | - |
1.8908 | 236500 | 4.9537 | - |
1.8948 | 237000 | 5.014 | - |
1.8988 | 237500 | 4.9226 | - |
1.9028 | 238000 | 4.9528 | - |
1.9068 | 238500 | 4.9213 | - |
1.9108 | 239000 | 4.8836 | - |
1.9148 | 239500 | 4.9354 | - |
1.9188 | 240000 | 4.8704 | - |
1.9228 | 240500 | 4.9336 | - |
1.9268 | 241000 | 4.8654 | - |
1.9308 | 241500 | 4.9376 | - |
1.9348 | 242000 | 4.9164 | - |
1.9388 | 242500 | 4.9584 | - |
1.9428 | 243000 | 4.8759 | - |
1.9468 | 243500 | 4.9324 | - |
1.9508 | 244000 | 4.8457 | - |
1.9548 | 244500 | 4.9048 | - |
1.9588 | 245000 | 4.9234 | - |
1.9628 | 245500 | 4.8536 | - |
1.9668 | 246000 | 4.9681 | - |
1.9708 | 246500 | 4.9161 | - |
1.9748 | 247000 | 4.9786 | - |
1.9788 | 247500 | 4.8784 | - |
1.9828 | 248000 | 4.9222 | - |
1.9868 | 248500 | 4.9061 | - |
1.9908 | 249000 | 4.9281 | - |
1.9948 | 249500 | 4.9007 | - |
1.9988 | 250000 | 4.9466 | - |
2.0028 | 250500 | 4.8483 | - |
2.0068 | 251000 | 4.8103 | - |
2.0108 | 251500 | 4.8288 | - |
2.0148 | 252000 | 4.8127 | - |
2.0188 | 252500 | 4.8619 | - |
2.0228 | 253000 | 4.7683 | - |
2.0268 | 253500 | 4.8246 | - |
2.0307 | 254000 | 4.7784 | - |
2.0347 | 254500 | 4.8416 | - |
2.0387 | 255000 | 4.7759 | - |
2.0427 | 255500 | 4.8185 | - |
2.0467 | 256000 | 4.7993 | - |
2.0507 | 256500 | 4.8505 | - |
2.0547 | 257000 | 4.7538 | - |
2.0587 | 257500 | 4.8128 | - |
2.0627 | 258000 | 4.7945 | - |
2.0667 | 258500 | 4.8436 | - |
2.0707 | 259000 | 4.8455 | - |
2.0747 | 259500 | 4.8235 | - |
2.0787 | 260000 | 4.7401 | - |
2.0827 | 260500 | 4.8347 | - |
2.0867 | 261000 | 4.7746 | - |
2.0907 | 261500 | 4.8129 | - |
2.0947 | 262000 | 4.8213 | - |
2.0987 | 262500 | 4.7762 | - |
2.1027 | 263000 | 4.8996 | - |
2.1067 | 263500 | 4.7671 | - |
2.1107 | 264000 | 4.7543 | - |
2.1147 | 264500 | 4.8171 | - |
2.1187 | 265000 | 4.8018 | - |
2.1227 | 265500 | 4.8622 | - |
2.1267 | 266000 | 4.7957 | - |
2.1307 | 266500 | 4.8256 | - |
2.1347 | 267000 | 4.7887 | - |
2.1387 | 267500 | 4.8366 | - |
2.1427 | 268000 | 4.7425 | - |
2.1467 | 268500 | 4.7731 | - |
2.1507 | 269000 | 4.7837 | - |
2.1547 | 269500 | 4.8199 | - |
2.1587 | 270000 | 4.8294 | - |
2.1627 | 270500 | 4.7913 | - |
2.1667 | 271000 | 4.7904 | - |
2.1707 | 271500 | 4.8006 | - |
2.1747 | 272000 | 4.7291 | - |
2.1787 | 272500 | 4.7825 | - |
2.1827 | 273000 | 4.7188 | - |
2.1867 | 273500 | 4.8076 | - |
2.1907 | 274000 | 4.8095 | - |
2.1946 | 274500 | 4.8016 | - |
2.1986 | 275000 | 4.7654 | - |
2.2026 | 275500 | 4.8253 | - |
2.2066 | 276000 | 4.7669 | - |
2.2106 | 276500 | 4.7752 | - |
2.2146 | 277000 | 4.8365 | - |
2.2186 | 277500 | 4.736 | - |
2.2226 | 278000 | 4.7251 | - |
2.2266 | 278500 | 4.7384 | - |
2.2306 | 279000 | 4.7001 | - |
2.2346 | 279500 | 4.8238 | - |
2.2386 | 280000 | 4.7455 | - |
2.2426 | 280500 | 4.7353 | - |
2.2466 | 281000 | 4.7557 | - |
2.2506 | 281500 | 4.7732 | - |
2.2546 | 282000 | 4.7795 | - |
2.2586 | 282500 | 4.8051 | - |
2.2626 | 283000 | 4.7726 | - |
2.2666 | 283500 | 4.8173 | - |
2.2706 | 284000 | 4.7607 | - |
2.2746 | 284500 | 4.7855 | - |
2.2786 | 285000 | 4.8191 | - |
2.2826 | 285500 | 4.7365 | - |
2.2866 | 286000 | 4.7416 | - |
2.2906 | 286500 | 4.7495 | - |
2.2946 | 287000 | 4.7597 | - |
2.2986 | 287500 | 4.7924 | - |
2.3026 | 288000 | 4.7603 | - |
2.3066 | 288500 | 4.7443 | - |
2.3106 | 289000 | 4.7826 | - |
2.3146 | 289500 | 4.7053 | - |
2.3186 | 290000 | 4.7274 | - |
2.3226 | 290500 | 4.7756 | - |
2.3266 | 291000 | 4.7881 | - |
2.3306 | 291500 | 4.7875 | - |
2.3346 | 292000 | 4.7254 | - |
2.3386 | 292500 | 4.7193 | - |
2.3426 | 293000 | 4.7639 | - |
2.3466 | 293500 | 4.7244 | - |
2.3506 | 294000 | 4.7996 | - |
2.3545 | 294500 | 4.7699 | - |
2.3585 | 295000 | 4.7504 | - |
2.3625 | 295500 | 4.6969 | - |
2.3665 | 296000 | 4.7523 | - |
2.3705 | 296500 | 4.6984 | - |
2.3745 | 297000 | 4.7297 | - |
2.3785 | 297500 | 4.7366 | - |
2.3825 | 298000 | 4.7177 | - |
2.3865 | 298500 | 4.7276 | - |
2.3905 | 299000 | 4.7916 | - |
2.3945 | 299500 | 4.7726 | - |
2.3985 | 300000 | 4.6847 | 4.6182 |
2.4025 | 300500 | 4.7426 | - |
2.4065 | 301000 | 4.7426 | - |
2.4105 | 301500 | 4.7588 | - |
2.4145 | 302000 | 4.7516 | - |
2.4185 | 302500 | 4.7318 | - |
2.4225 | 303000 | 4.7366 | - |
2.4265 | 303500 | 4.7328 | - |
2.4305 | 304000 | 4.687 | - |
2.4345 | 304500 | 4.6934 | - |
2.4385 | 305000 | 4.8018 | - |
2.4425 | 305500 | 4.709 | - |
2.4465 | 306000 | 4.6837 | - |
2.4505 | 306500 | 4.7268 | - |
2.4545 | 307000 | 4.7508 | - |
2.4585 | 307500 | 4.6809 | - |
2.4625 | 308000 | 4.7127 | - |
2.4665 | 308500 | 4.7319 | - |
2.4705 | 309000 | 4.6616 | - |
2.4745 | 309500 | 4.6795 | - |
2.4785 | 310000 | 4.6834 | - |
2.4825 | 310500 | 4.7565 | - |
2.4865 | 311000 | 4.71 | - |
2.4905 | 311500 | 4.7456 | - |
2.4945 | 312000 | 4.7009 | - |
2.4985 | 312500 | 4.7716 | - |
2.5025 | 313000 | 4.6919 | - |
2.5065 | 313500 | 4.7159 | - |
2.5105 | 314000 | 4.7297 | - |
2.5145 | 314500 | 4.7487 | - |
2.5184 | 315000 | 4.7104 | - |
2.5224 | 315500 | 4.6836 | - |
2.5264 | 316000 | 4.6765 | - |
2.5304 | 316500 | 4.7597 | - |
2.5344 | 317000 | 4.6589 | - |
2.5384 | 317500 | 4.6776 | - |
2.5424 | 318000 | 4.757 | - |
2.5464 | 318500 | 4.7112 | - |
2.5504 | 319000 | 4.7098 | - |
2.5544 | 319500 | 4.7395 | - |
2.5584 | 320000 | 4.7164 | - |
2.5624 | 320500 | 4.759 | - |
2.5664 | 321000 | 4.7274 | - |
2.5704 | 321500 | 4.6674 | - |
2.5744 | 322000 | 4.6751 | - |
2.5784 | 322500 | 4.613 | - |
2.5824 | 323000 | 4.6354 | - |
2.5864 | 323500 | 4.6394 | - |
2.5904 | 324000 | 4.6935 | - |
2.5944 | 324500 | 4.7022 | - |
2.5984 | 325000 | 4.6831 | - |
2.6024 | 325500 | 4.7033 | - |
2.6064 | 326000 | 4.7113 | - |
2.6104 | 326500 | 4.6515 | - |
2.6144 | 327000 | 4.5857 | - |
2.6184 | 327500 | 4.6675 | - |
2.6224 | 328000 | 4.7054 | - |
2.6264 | 328500 | 4.6774 | - |
2.6304 | 329000 | 4.6585 | - |
2.6344 | 329500 | 4.7232 | - |
2.6384 | 330000 | 4.6977 | - |
2.6424 | 330500 | 4.6576 | - |
2.6464 | 331000 | 4.6725 | - |
2.6504 | 331500 | 4.6805 | - |
2.6544 | 332000 | 4.6577 | - |
2.6584 | 332500 | 4.7071 | - |
2.6624 | 333000 | 4.6369 | - |
2.6664 | 333500 | 4.6759 | - |
2.6704 | 334000 | 4.6337 | - |
2.6744 | 334500 | 4.6379 | - |
2.6784 | 335000 | 4.6706 | - |
2.6823 | 335500 | 4.6853 | - |
2.6863 | 336000 | 4.7038 | - |
2.6903 | 336500 | 4.6554 | - |
2.6943 | 337000 | 4.6431 | - |
2.6983 | 337500 | 4.6991 | - |
2.7023 | 338000 | 4.6217 | - |
2.7063 | 338500 | 4.668 | - |
2.7103 | 339000 | 4.6611 | - |
2.7143 | 339500 | 4.6793 | - |
2.7183 | 340000 | 4.6465 | - |
2.7223 | 340500 | 4.6846 | - |
2.7263 | 341000 | 4.6407 | - |
2.7303 | 341500 | 4.7138 | - |
2.7343 | 342000 | 4.659 | - |
2.7383 | 342500 | 4.6315 | - |
2.7423 | 343000 | 4.6272 | - |
2.7463 | 343500 | 4.6833 | - |
2.7503 | 344000 | 4.6754 | - |
2.7543 | 344500 | 4.653 | - |
2.7583 | 345000 | 4.6996 | - |
2.7623 | 345500 | 4.679 | - |
2.7663 | 346000 | 4.6452 | - |
2.7703 | 346500 | 4.6275 | - |
2.7743 | 347000 | 4.6215 | - |
2.7783 | 347500 | 4.654 | - |
2.7823 | 348000 | 4.5852 | - |
2.7863 | 348500 | 4.5764 | - |
2.7903 | 349000 | 4.641 | - |
2.7943 | 349500 | 4.6139 | - |
2.7983 | 350000 | 4.6775 | - |
2.8023 | 350500 | 4.6022 | - |
2.8063 | 351000 | 4.6272 | - |
2.8103 | 351500 | 4.6111 | - |
2.8143 | 352000 | 4.58 | - |
2.8183 | 352500 | 4.6763 | - |
2.8223 | 353000 | 4.6233 | - |
2.8263 | 353500 | 4.5973 | - |
2.8303 | 354000 | 4.6608 | - |
2.8343 | 354500 | 4.592 | - |
2.8383 | 355000 | 4.6801 | - |
2.8422 | 355500 | 4.6838 | - |
2.8462 | 356000 | 4.596 | - |
2.8502 | 356500 | 4.59 | - |
2.8542 | 357000 | 4.5696 | - |
2.8582 | 357500 | 4.5852 | - |
2.8622 | 358000 | 4.6176 | - |
2.8662 | 358500 | 4.7878 | - |
2.8702 | 359000 | 4.5917 | - |
2.8742 | 359500 | 4.659 | - |
2.8782 | 360000 | 4.6217 | - |
2.8822 | 360500 | 4.5605 | - |
2.8862 | 361000 | 4.5948 | - |
2.8902 | 361500 | 4.6097 | - |
2.8942 | 362000 | 4.6381 | - |
2.8982 | 362500 | 4.5962 | - |
2.9022 | 363000 | 4.6115 | - |
2.9062 | 363500 | 4.6171 | - |
2.9102 | 364000 | 4.6593 | - |
2.9142 | 364500 | 4.6264 | - |
2.9182 | 365000 | 4.6625 | - |
2.9222 | 365500 | 4.6538 | - |
2.9262 | 366000 | 4.6148 | - |
2.9302 | 366500 | 4.6189 | - |
2.9342 | 367000 | 4.6181 | - |
2.9382 | 367500 | 4.6206 | - |
2.9422 | 368000 | 4.6196 | - |
2.9462 | 368500 | 4.6006 | - |
2.9502 | 369000 | 4.6136 | - |
2.9542 | 369500 | 4.6126 | - |
2.9582 | 370000 | 4.5722 | - |
2.9622 | 370500 | 4.6372 | - |
2.9662 | 371000 | 4.5645 | - |
2.9702 | 371500 | 4.6004 | - |
2.9742 | 372000 | 4.6302 | - |
2.9782 | 372500 | 4.596 | - |
2.9822 | 373000 | 4.5669 | - |
2.9862 | 373500 | 4.602 | - |
2.9902 | 374000 | 4.5663 | - |
2.9942 | 374500 | 4.642 | - |
2.9982 | 375000 | 4.6571 | - |
3.0022 | 375500 | 4.5416 | - |
3.0061 | 376000 | 4.401 | - |
3.0101 | 376500 | 4.5286 | - |
3.0141 | 377000 | 4.5782 | - |
3.0181 | 377500 | 4.4813 | - |
3.0221 | 378000 | 4.6178 | - |
3.0261 | 378500 | 4.465 | - |
3.0301 | 379000 | 4.54 | - |
3.0341 | 379500 | 4.4754 | - |
3.0381 | 380000 | 4.4952 | - |
3.0421 | 380500 | 4.4559 | - |
3.0461 | 381000 | 4.4628 | - |
3.0501 | 381500 | 4.4921 | - |
3.0541 | 382000 | 4.5431 | - |
3.0581 | 382500 | 4.458 | - |
3.0621 | 383000 | 4.4635 | - |
3.0661 | 383500 | 4.5708 | - |
3.0701 | 384000 | 4.527 | - |
3.0741 | 384500 | 4.4934 | - |
3.0781 | 385000 | 4.5327 | - |
3.0821 | 385500 | 4.4403 | - |
3.0861 | 386000 | 4.5091 | - |
3.0901 | 386500 | 4.5706 | - |
3.0941 | 387000 | 4.5111 | - |
3.0981 | 387500 | 4.4952 | - |
3.1021 | 388000 | 4.5416 | - |
3.1061 | 388500 | 4.4591 | - |
3.1101 | 389000 | 4.4738 | - |
3.1141 | 389500 | 4.514 | - |
3.1181 | 390000 | 4.5517 | - |
3.1221 | 390500 | 4.5412 | - |
3.1261 | 391000 | 4.4587 | - |
3.1301 | 391500 | 4.4099 | - |
3.1341 | 392000 | 4.5022 | - |
3.1381 | 392500 | 4.4698 | - |
3.1421 | 393000 | 4.4923 | - |
3.1461 | 393500 | 4.4601 | - |
3.1501 | 394000 | 4.5446 | - |
3.1541 | 394500 | 4.4247 | - |
3.1581 | 395000 | 4.4242 | - |
3.1621 | 395500 | 4.4761 | - |
3.1660 | 396000 | 4.4489 | - |
3.1700 | 396500 | 4.4729 | - |
3.1740 | 397000 | 4.4916 | - |
3.1780 | 397500 | 4.4595 | - |
3.1820 | 398000 | 4.4726 | - |
3.1860 | 398500 | 4.4582 | - |
3.1900 | 399000 | 4.4528 | - |
3.1940 | 399500 | 4.4559 | - |
3.1980 | 400000 | 4.4422 | - |
3.2020 | 400500 | 4.4876 | - |
3.2060 | 401000 | 4.4733 | - |
3.2100 | 401500 | 4.4214 | - |
3.2140 | 402000 | 4.4644 | - |
3.2180 | 402500 | 4.4732 | - |
3.2220 | 403000 | 4.4603 | - |
3.2260 | 403500 | 4.4993 | - |
3.2300 | 404000 | 4.4994 | - |
3.2340 | 404500 | 4.4778 | - |
3.2380 | 405000 | 4.5121 | - |
3.2420 | 405500 | 4.4108 | - |
3.2460 | 406000 | 4.3834 | - |
3.2500 | 406500 | 4.4434 | - |
3.2540 | 407000 | 4.4464 | - |
3.2580 | 407500 | 4.4645 | - |
3.2620 | 408000 | 4.5341 | - |
3.2660 | 408500 | 4.5013 | - |
3.2700 | 409000 | 4.4671 | - |
3.2740 | 409500 | 4.4962 | - |
3.2780 | 410000 | 4.444 | - |
3.2820 | 410500 | 4.5596 | - |
3.2860 | 411000 | 4.5458 | - |
3.2900 | 411500 | 4.4768 | - |
3.2940 | 412000 | 4.5219 | - |
3.2980 | 412500 | 4.4747 | - |
3.3020 | 413000 | 4.5522 | - |
3.3060 | 413500 | 4.4709 | - |
3.3100 | 414000 | 4.4982 | - |
3.3140 | 414500 | 4.4459 | - |
3.3180 | 415000 | 4.4523 | - |
3.3220 | 415500 | 4.4214 | - |
3.3260 | 416000 | 4.3863 | - |
3.3299 | 416500 | 4.4348 | - |
3.3339 | 417000 | 4.4873 | - |
3.3379 | 417500 | 4.5004 | - |
3.3419 | 418000 | 4.5359 | - |
3.3459 | 418500 | 4.458 | - |
3.3499 | 419000 | 4.4721 | - |
3.3539 | 419500 | 4.5148 | - |
3.3579 | 420000 | 4.4239 | - |
3.3619 | 420500 | 4.423 | - |
3.3659 | 421000 | 4.4774 | - |
3.3699 | 421500 | 4.4258 | - |
3.3739 | 422000 | 4.5019 | - |
3.3779 | 422500 | 4.4487 | - |
3.3819 | 423000 | 4.4691 | - |
3.3859 | 423500 | 4.5267 | - |
3.3899 | 424000 | 4.4422 | - |
3.3939 | 424500 | 4.4965 | - |
3.3979 | 425000 | 4.407 | - |
3.4019 | 425500 | 4.4443 | - |
3.4059 | 426000 | 4.5078 | - |
3.4099 | 426500 | 4.4561 | - |
3.4139 | 427000 | 4.4057 | - |
3.4179 | 427500 | 4.4829 | - |
3.4219 | 428000 | 4.4281 | - |
3.4259 | 428500 | 4.4486 | - |
3.4299 | 429000 | 4.4626 | - |
3.4339 | 429500 | 4.4792 | - |
3.4379 | 430000 | 4.4109 | - |
3.4419 | 430500 | 4.531 | - |
3.4459 | 431000 | 4.4599 | - |
3.4499 | 431500 | 4.376 | - |
3.4539 | 432000 | 4.4899 | - |
3.4579 | 432500 | 4.4339 | - |
3.4619 | 433000 | 4.3908 | - |
3.4659 | 433500 | 4.3601 | - |
3.4699 | 434000 | 4.4492 | - |
3.4739 | 434500 | 4.4114 | - |
3.4779 | 435000 | 4.3885 | - |
3.4819 | 435500 | 4.4452 | - |
3.4859 | 436000 | 4.4125 | - |
3.4899 | 436500 | 4.4369 | - |
3.4938 | 437000 | 4.4511 | - |
3.4978 | 437500 | 4.4088 | - |
3.5018 | 438000 | 4.4583 | - |
3.5058 | 438500 | 4.4259 | - |
3.5098 | 439000 | 4.4397 | - |
3.5138 | 439500 | 4.3635 | - |
3.5178 | 440000 | 4.4461 | - |
3.5218 | 440500 | 4.4595 | - |
3.5258 | 441000 | 4.5471 | - |
3.5298 | 441500 | 4.4739 | - |
3.5338 | 442000 | 4.4534 | - |
3.5378 | 442500 | 4.369 | - |
3.5418 | 443000 | 4.4104 | - |
3.5458 | 443500 | 4.4219 | - |
3.5498 | 444000 | 4.3791 | - |
3.5538 | 444500 | 4.4981 | - |
3.5578 | 445000 | 4.3899 | - |
3.5618 | 445500 | 4.4454 | - |
3.5658 | 446000 | 4.3621 | - |
3.5698 | 446500 | 4.4437 | - |
3.5738 | 447000 | 4.4827 | - |
3.5778 | 447500 | 4.4761 | - |
3.5818 | 448000 | 4.4698 | - |
3.5858 | 448500 | 4.4386 | - |
3.5898 | 449000 | 4.4147 | - |
3.5938 | 449500 | 4.4644 | - |
3.5978 | 450000 | 4.3913 | - |
3.6018 | 450500 | 4.4642 | - |
3.6058 | 451000 | 4.4529 | - |
3.6098 | 451500 | 4.4912 | - |
3.6138 | 452000 | 4.3711 | - |
3.6178 | 452500 | 4.5121 | - |
3.6218 | 453000 | 4.4718 | - |
3.6258 | 453500 | 4.4593 | - |
3.6298 | 454000 | 4.3954 | - |
3.6338 | 454500 | 4.3387 | - |
3.6378 | 455000 | 4.3933 | - |
3.6418 | 455500 | 4.4689 | - |
3.6458 | 456000 | 4.4221 | - |
3.6498 | 456500 | 4.4561 | - |
3.6537 | 457000 | 4.3731 | - |
3.6577 | 457500 | 4.4143 | - |
3.6617 | 458000 | 4.4378 | - |
3.6657 | 458500 | 4.3778 | - |
3.6697 | 459000 | 4.4467 | - |
3.6737 | 459500 | 4.4633 | - |
3.6777 | 460000 | 4.438 | - |
3.6817 | 460500 | 4.4633 | - |
3.6857 | 461000 | 4.4209 | - |
3.6897 | 461500 | 4.4838 | - |
3.6937 | 462000 | 4.3811 | - |
3.6977 | 462500 | 4.4388 | - |
3.7017 | 463000 | 4.462 | - |
3.7057 | 463500 | 4.3969 | - |
3.7097 | 464000 | 4.4324 | - |
3.7137 | 464500 | 4.3826 | - |
3.7177 | 465000 | 4.4277 | - |
3.7217 | 465500 | 4.4819 | - |
3.7257 | 466000 | 4.4314 | - |
3.7297 | 466500 | 4.4364 | - |
3.7337 | 467000 | 4.4119 | - |
3.7377 | 467500 | 4.4413 | - |
3.7417 | 468000 | 4.434 | - |
3.7457 | 468500 | 4.4263 | - |
3.7497 | 469000 | 4.4241 | - |
3.7537 | 469500 | 4.4055 | - |
3.7577 | 470000 | 4.4456 | - |
3.7617 | 470500 | 4.4056 | - |
3.7657 | 471000 | 4.4655 | - |
3.7697 | 471500 | 4.4211 | - |
3.7737 | 472000 | 4.4314 | - |
3.7777 | 472500 | 4.4651 | - |
3.7817 | 473000 | 4.3825 | - |
3.7857 | 473500 | 4.4665 | - |
3.7897 | 474000 | 4.4425 | - |
3.7937 | 474500 | 4.3956 | - |
3.7977 | 475000 | 4.4302 | - |
3.8017 | 475500 | 4.4057 | - |
3.8057 | 476000 | 4.337 | - |
3.8097 | 476500 | 4.4776 | - |
3.8137 | 477000 | 4.4289 | - |
3.8176 | 477500 | 4.4508 | - |
3.8216 | 478000 | 4.4438 | - |
3.8256 | 478500 | 4.3681 | - |
3.8296 | 479000 | 4.4492 | - |
3.8336 | 479500 | 4.3427 | - |
3.8376 | 480000 | 4.4412 | - |
3.8416 | 480500 | 4.385 | - |
3.8456 | 481000 | 4.401 | - |
3.8496 | 481500 | 4.3606 | - |
3.8536 | 482000 | 4.3404 | - |
3.8576 | 482500 | 4.4591 | - |
3.8616 | 483000 | 4.3984 | - |
3.8656 | 483500 | 4.4195 | - |
3.8696 | 484000 | 4.4414 | - |
3.8736 | 484500 | 4.4028 | - |
3.8776 | 485000 | 4.3685 | - |
3.8816 | 485500 | 4.3658 | - |
3.8856 | 486000 | 4.3967 | - |
3.8896 | 486500 | 4.5247 | - |
3.8936 | 487000 | 4.4359 | - |
3.8976 | 487500 | 4.4493 | - |
3.9016 | 488000 | 4.4604 | - |
3.9056 | 488500 | 4.3784 | - |
3.9096 | 489000 | 4.4631 | - |
3.9136 | 489500 | 4.4359 | - |
3.9176 | 490000 | 4.3923 | - |
3.9216 | 490500 | 4.3844 | - |
3.9256 | 491000 | 4.41 | - |
3.9296 | 491500 | 4.4547 | - |
3.9336 | 492000 | 4.3895 | - |
3.9376 | 492500 | 4.3827 | - |
3.9416 | 493000 | 4.3615 | - |
3.9456 | 493500 | 4.4237 | - |
3.9496 | 494000 | 4.4513 | - |
3.9536 | 494500 | 4.4038 | - |
3.9576 | 495000 | 4.4093 | - |
3.9616 | 495500 | 4.3791 | - |
3.9656 | 496000 | 4.2971 | - |
3.9696 | 496500 | 4.4166 | - |
3.9736 | 497000 | 4.454 | - |
3.9775 | 497500 | 4.4146 | - |
3.9815 | 498000 | 4.3621 | - |
3.9855 | 498500 | 4.3588 | - |
3.9895 | 499000 | 4.4758 | - |
3.9935 | 499500 | 4.4936 | - |
3.9975 | 500000 | 4.4108 | - |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for youssefkhalil320/all-MiniLM-L6-v3-pairscore
Base model
sentence-transformers/all-MiniLM-L6-v2