metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- jlvdoorn/atco2-asr-atcosim
metrics:
- wer
model-index:
- name: Whisper Small En - Whisper with atco2-asr-atcosim
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: >-
This is a dataset constructed from two datasets: ATCO2-ASR and
ATCOSIM.
type: jlvdoorn/atco2-asr-atcosim
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 0.02577651759247326
Whisper Small En - Whisper with atco2-asr-atcosim
This model is a fine-tuned version of openai/whisper-small on the This is a dataset constructed from two datasets: ATCO2-ASR and ATCOSIM. dataset. It achieves the following results on the evaluation set:
- Loss: 0.0010
- Wer: 0.0258
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0637 | 1.9763 | 1000 | 0.0962 | 7.4365 |
0.0154 | 3.9526 | 2000 | 0.0163 | 2.3972 |
0.002 | 5.9289 | 3000 | 0.0027 | 1.5015 |
0.0003 | 7.9051 | 4000 | 0.0010 | 0.0258 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1