Gyeongsang_model / README.md
yomilimi's picture
End of training
aeecd63 verified
---
license: mit
base_model: gogamza/kobart-base-v2
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: Gyeongsang_model_
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gyeongsang_model_
This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co./gogamza/kobart-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0064
- Bleu: 91.3913
- Gen Len: 13.3266
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.0039 | 1.0 | 12910 | 0.0066 | 91.3315 | 13.3276 |
| 0.0033 | 2.0 | 25820 | 0.0062 | 91.4059 | 13.3258 |
| 0.0026 | 3.0 | 38730 | 0.0064 | 91.3913 | 13.3266 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1