|
--- |
|
language: |
|
- ga |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ymoslem/IWSLT2023-GA-EN |
|
- ymoslem/FLEURS-GA-EN |
|
- ymoslem/BitesizeIrish-GA-EN |
|
- ymoslem/SpokenWords-GA-EN-MTed |
|
- ymoslem/Tatoeba-Speech-Irish |
|
- ymoslem/Wikimedia-Speech-Irish |
|
metrics: |
|
- bleu |
|
- wer |
|
model-index: |
|
- name: Whisper Small GA-EN Speech Translation |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia |
|
type: ymoslem/IWSLT2023-GA-EN |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 32.44 |
|
- name: Wer |
|
type: wer |
|
value: 63.259792886087354 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small GA-EN Speech Translation |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3690 |
|
- Bleu: 32.44 |
|
- Chrf: 48.06 |
|
- Wer: 63.2598 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- training_steps: 3000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-----:|:-----:|:--------:| |
|
| 2.3655 | 0.0438 | 100 | 1.7709 | 8.84 | 26.21 | 127.7803 | |
|
| 1.8998 | 0.0876 | 200 | 1.5198 | 14.9 | 32.89 | 99.2796 | |
|
| 1.5421 | 0.1313 | 300 | 1.3972 | 16.15 | 35.77 | 86.8077 | |
|
| 1.3154 | 0.1751 | 400 | 1.3412 | 20.46 | 39.48 | 83.0707 | |
|
| 1.1138 | 0.2189 | 500 | 1.3126 | 23.16 | 41.28 | 74.1108 | |
|
| 0.9814 | 0.2627 | 600 | 1.3217 | 25.56 | 41.67 | 68.7528 | |
|
| 0.8897 | 0.3065 | 700 | 1.2859 | 27.0 | 43.54 | 66.3215 | |
|
| 0.7495 | 0.3503 | 800 | 1.2668 | 21.71 | 43.03 | 75.7767 | |
|
| 0.7068 | 0.3940 | 900 | 1.2852 | 17.86 | 40.88 | 106.0333 | |
|
| 0.6002 | 0.4378 | 1000 | 1.2476 | 24.0 | 44.26 | 78.4331 | |
|
| 0.4989 | 0.4816 | 1100 | 1.2756 | 28.88 | 45.57 | 67.2670 | |
|
| 0.4464 | 0.5254 | 1200 | 1.2756 | 27.81 | 45.53 | 66.8618 | |
|
| 0.3883 | 0.5692 | 1300 | 1.2799 | 29.84 | 46.03 | 64.0702 | |
|
| 0.341 | 0.6130 | 1400 | 1.2693 | 26.51 | 43.97 | 75.3715 | |
|
| 0.2853 | 0.6567 | 1500 | 1.3310 | 26.99 | 45.58 | 74.0207 | |
|
| 0.2611 | 0.7005 | 1600 | 1.3022 | 25.83 | 44.79 | 73.4354 | |
|
| 0.2013 | 0.7443 | 1700 | 1.3266 | 30.78 | 46.61 | 63.6650 | |
|
| 0.1886 | 0.7881 | 1800 | 1.2943 | 25.56 | 45.46 | 73.7055 | |
|
| 0.1517 | 0.8319 | 1900 | 1.3193 | 28.93 | 45.09 | 64.3854 | |
|
| 0.1288 | 0.8757 | 2000 | 1.3567 | 28.22 | 44.75 | 67.6722 | |
|
| 0.1129 | 0.9194 | 2100 | 1.3431 | 29.55 | 46.22 | 66.2314 | |
|
| 0.1 | 0.9632 | 2200 | 1.3365 | 31.46 | 48.14 | 64.9257 | |
|
| 0.0505 | 1.0070 | 2300 | 1.3557 | 30.37 | 47.16 | 64.1153 | |
|
| 0.0468 | 1.0508 | 2400 | 1.3648 | 31.57 | 48.17 | 62.0891 | |
|
| 0.0373 | 1.0946 | 2500 | 1.3661 | 31.56 | 47.76 | 64.7456 | |
|
| 0.0297 | 1.1384 | 2600 | 1.3638 | 31.13 | 47.74 | 64.3854 | |
|
| 0.0283 | 1.1821 | 2700 | 1.3847 | 29.98 | 47.54 | 65.9613 | |
|
| 0.0302 | 1.2259 | 2800 | 1.3730 | 32.32 | 48.28 | 64.0252 | |
|
| 0.0229 | 1.2697 | 2900 | 1.3702 | 31.47 | 47.55 | 65.1508 | |
|
| 0.0262 | 1.3135 | 3000 | 1.3690 | 32.44 | 48.06 | 63.2598 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|