|
--- |
|
language: |
|
- ga |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ymoslem/IWSLT2023-GA-EN |
|
- ymoslem/FLEURS-GA-EN |
|
- ymoslem/BitesizeIrish-GA-EN |
|
- ymoslem/SpokenWords-GA-EN-MTed |
|
- ymoslem/Tatoeba-Speech-Irish |
|
- ymoslem/Wikimedia-Speech-Irish |
|
metrics: |
|
- bleu |
|
- wer |
|
model-index: |
|
- name: Whisper Small GA-EN Speech Translation |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia |
|
type: ymoslem/IWSLT2023-GA-EN |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 30.93 |
|
- name: Wer |
|
type: wer |
|
value: 63.12471859522738 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small GA-EN Speech Translation |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2119 |
|
- Bleu: 30.93 |
|
- Chrf: 49.09 |
|
- Wer: 63.1247 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 0.02 |
|
- training_steps: 2000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:-----:|:-----:|:---------------:|:--------:| |
|
| 2.7017 | 0.02 | 100 | 2.83 | 14.96 | 2.4392 | 169.5182 | |
|
| 2.6732 | 0.04 | 200 | 7.27 | 22.72 | 1.9552 | 103.2868 | |
|
| 2.1622 | 0.07 | 300 | 11.43 | 30.01 | 1.7297 | 108.2395 | |
|
| 2.0314 | 0.09 | 400 | 12.96 | 31.0 | 1.6499 | 106.4385 | |
|
| 1.7219 | 0.11 | 500 | 12.94 | 33.67 | 1.5543 | 107.6092 | |
|
| 1.577 | 0.13 | 600 | 12.84 | 35.03 | 1.4812 | 118.5502 | |
|
| 1.3569 | 0.1532 | 700 | 1.4559| 19.94 | 38.08 | 84.2864 | |
|
| 1.3401 | 0.1751 | 800 | 1.3855| 13.39 | 36.11 | 126.4295 | |
|
| 1.2272 | 0.1970 | 900 | 1.3764| 24.39 | 41.75 | 70.7789 | |
|
| 1.2793 | 0.2189 | 1000 | 1.3389| 23.01 | 42.13 | 80.6844 | |
|
| 1.0383 | 0.2408 | 1100 | 1.3125| 23.42 | 43.59 | 82.3953 | |
|
| 1.0485 | 0.2627 | 1200 | 1.2996| 25.42 | 42.99 | 69.4732 | |
|
| 1.0427 | 0.2846 | 1300 | 1.2996| 29.24 | 45.36 | 65.6461 | |
|
| 0.8174 | 0.3065 | 1400 | 1.2522| 27.28 | 45.67 | 68.3926 | |
|
| 0.7345 | 0.3284 | 1500 | 1.2349| 26.35 | 46.78 | 79.1986 | |
|
| 0.7551 | 0.3503 | 1600 | 1.2317| 27.81 | 46.49 | 70.6439 | |
|
| 0.6765 | 0.3722 | 1700 | 1.2062| 27.62 | 47.46 | 70.9140 | |
|
| 0.6613 | 0.3940 | 1800 | 1.2087| 26.56 | 47.12 | 72.8050 | |
|
| 0.6181 | 0.4159 | 1900 | 1.2139| 29.91 | 48.76 | 65.2859 | |
|
| 0.5809 | 0.4378 | 2000 | 1.2119| 30.93 | 49.09 | 63.1247 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |
|
|