ymoslem's picture
End of training
8c53fa0 verified
metadata
language:
  - ga
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - ymoslem/IWSLT2023-GA-EN
  - ymoslem/FLEURS-GA-EN
  - ymoslem/BitesizeIrish-GA-EN
  - ymoslem/SpokenWords-GA-EN-MTed
  - ymoslem/Tatoeba-Speech-Irish
  - ymoslem/Wikimedia-Speech-Irish
metrics:
  - bleu
  - wer
model-index:
  - name: Whisper Small GA-EN Speech Translation
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia
          type: ymoslem/IWSLT2023-GA-EN
        metrics:
          - name: Bleu
            type: bleu
            value: 32.04
          - name: Wer
            type: wer
            value: 63.39486717694732

Whisper Small GA-EN Speech Translation

This model is a fine-tuned version of openai/whisper-small on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4631
  • Bleu: 32.04
  • Chrf: 48.69
  • Wer: 63.3949

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Chrf Wer
2.3783 0.1312 100 1.8852 7.56 22.6 113.2823
1.92 0.2625 200 1.5276 16.93 32.19 81.4498
1.6661 0.3937 300 1.3907 16.26 35.75 99.1896
1.4712 0.5249 400 1.3126 24.55 42.56 77.8478
1.3404 0.6562 500 1.2960 23.94 42.25 77.3976
1.2106 0.7874 600 1.2556 23.82 43.46 73.5705
1.0312 0.9186 700 1.3002 23.73 43.09 74.6060
0.5265 1.0499 800 1.2993 28.09 45.57 69.1580
0.4802 1.1811 900 1.3466 25.21 43.38 75.7767
0.4415 1.3123 1000 1.3456 29.77 47.56 66.9968
0.4164 1.4436 1100 1.3373 27.92 45.54 70.9140
0.3937 1.5748 1200 1.3162 30.09 46.51 64.2053
0.3391 1.7060 1300 1.3424 24.82 45.35 72.9401
0.2969 1.8373 1400 1.3271 31.78 48.51 62.5394
0.2755 1.9685 1500 1.3523 31.6 48.33 61.3237
0.1059 2.0997 1600 1.3910 30.26 45.88 65.3309
0.0975 2.2310 1700 1.4255 30.28 46.1 64.1603
0.1047 2.3622 1800 1.3923 29.99 46.44 64.9257
0.0874 2.4934 1900 1.4111 30.14 47.09 65.1058
0.0838 2.6247 2000 1.4378 25.63 45.79 77.4426
0.0757 2.7559 2100 1.4356 29.28 47.5 65.0608
0.0749 2.8871 2200 1.4532 30.56 46.58 64.3854
0.0463 3.0184 2300 1.4324 32.69 49.04 62.6294
0.0265 3.1496 2400 1.4311 31.24 48.58 62.9896
0.0266 3.2808 2500 1.4409 31.97 47.99 62.4944
0.0237 3.4121 2600 1.4310 32.44 48.86 62.2692
0.0208 3.5433 2700 1.4483 31.3 47.49 63.5299
0.0185 3.6745 2800 1.4513 32.86 48.98 62.6294
0.0178 3.8058 2900 1.4583 31.77 48.91 63.0797
0.0194 3.9370 3000 1.4631 32.04 48.69 63.3949

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1