ymoslem's picture
End of training
51c8473 verified
|
raw
history blame
2.88 kB
---
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
- ymoslem/Tatoeba-Speech-Irish
- ymoslem/Wikimedia-Speech-Irish
metrics:
- bleu
- wer
model-index:
- name: Whisper Small GA-EN Speech Translation
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia
type: ymoslem/IWSLT2023-GA-EN
metrics:
- name: Bleu
type: bleu
value: 25.68
- name: Wer
type: wer
value: 71.04907699234579
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small GA-EN Speech Translation
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1571
- Bleu: 25.68
- Chrf: 45.53
- Wer: 71.0491
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.03
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-----:|:-----:|:--------:|
| 2.6685 | 0.07 | 100 | 2.0544 | 5.05 | 20.18 | 139.8919 |
| 2.4028 | 0.13 | 200 | 1.7367 | 12.29 | 29.72 | 95.5425 |
| 2.1231 | 0.2 | 300 | 1.6141 | 14.33 | 30.77 | 101.3958 |
| 1.9192 | 0.26 | 400 | 1.4778 | 16.86 | 35.65 | 91.0851 |
| 1.7129 | 0.33 | 500 | 1.3811 | 16.77 | 37.53 | 93.8766 |
| 1.5398 | 0.39 | 600 | 1.3427 | 18.85 | 39.0 | 90.2296 |
| 1.4257 | 0.46 | 700 | 1.2784 | 25.73 | 43.3 | 70.3287 |
| 1.3044 | 0.53 | 800 | 1.2274 | 25.43 | 44.33 | 72.3548 |
| 1.2626 | 0.59 | 900 | 1.1875 | 25.09 | 44.62 | 72.6249 |
| 1.2801 | 0.66 | 1000 | 1.1571 | 25.68 | 45.53 | 71.0491 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2