ymoslem's picture
End of training
51c8473 verified
|
raw
history blame
2.88 kB
metadata
language:
  - ga
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - ymoslem/IWSLT2023-GA-EN
  - ymoslem/FLEURS-GA-EN
  - ymoslem/BitesizeIrish-GA-EN
  - ymoslem/SpokenWords-GA-EN-MTed
  - ymoslem/Tatoeba-Speech-Irish
  - ymoslem/Wikimedia-Speech-Irish
metrics:
  - bleu
  - wer
model-index:
  - name: Whisper Small GA-EN Speech Translation
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia
          type: ymoslem/IWSLT2023-GA-EN
        metrics:
          - name: Bleu
            type: bleu
            value: 25.68
          - name: Wer
            type: wer
            value: 71.04907699234579

Whisper Small GA-EN Speech Translation

This model is a fine-tuned version of openai/whisper-small on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1571
  • Bleu: 25.68
  • Chrf: 45.53
  • Wer: 71.0491

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 0.03
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Chrf Wer
2.6685 0.07 100 2.0544 5.05 20.18 139.8919
2.4028 0.13 200 1.7367 12.29 29.72 95.5425
2.1231 0.2 300 1.6141 14.33 30.77 101.3958
1.9192 0.26 400 1.4778 16.86 35.65 91.0851
1.7129 0.33 500 1.3811 16.77 37.53 93.8766
1.5398 0.39 600 1.3427 18.85 39.0 90.2296
1.4257 0.46 700 1.2784 25.73 43.3 70.3287
1.3044 0.53 800 1.2274 25.43 44.33 72.3548
1.2626 0.59 900 1.1875 25.09 44.62 72.6249
1.2801 0.66 1000 1.1571 25.68 45.53 71.0491

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2