|
--- |
|
language: |
|
- ga |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ymoslem/IWSLT2023-GA-EN |
|
- ymoslem/FLEURS-GA-EN |
|
- ymoslem/BitesizeIrish-GA-EN |
|
- ymoslem/SpokenWords-GA-EN-MTed |
|
- ymoslem/Tatoeba-Speech-Irish |
|
- ymoslem/Wikimedia-Speech-Irish |
|
- ymoslem/EUbookshop-Speech-Irish |
|
metrics: |
|
- bleu |
|
- wer |
|
model-index: |
|
- name: Whisper Medium GA-EN Speech Translation |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, Wikimedia, and EUbookshop |
|
type: ymoslem/IWSLT2023-GA-EN |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 33.24 |
|
- name: Wer |
|
type: wer |
|
value: 61.50382710490771 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Medium GA-EN Speech Translation |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, Wikimedia, and EUbookshop dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0552 |
|
- Bleu: 33.24 |
|
- Chrf: 55.16 |
|
- Wer: 61.5038 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- training_steps: 4000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-----:|:-----:|:--------:| |
|
| 2.5219 | 0.0138 | 100 | 2.1106 | 0.44 | 10.48 | 107.2490 | |
|
| 2.4608 | 0.0276 | 200 | 2.1816 | 3.3 | 20.43 | 179.1535 | |
|
| 2.3008 | 0.0414 | 300 | 2.0587 | 3.66 | 21.59 | 206.4836 | |
|
| 2.2095 | 0.0552 | 400 | 1.9459 | 8.79 | 27.66 | 100.3602 | |
|
| 2.0454 | 0.0690 | 500 | 1.8681 | 8.14 | 27.36 | 122.1522 | |
|
| 1.9937 | 0.0828 | 600 | 1.8717 | 11.05 | 30.26 | 97.2535 | |
|
| 1.868 | 0.0966 | 700 | 1.7917 | 9.14 | 29.03 | 129.0410 | |
|
| 1.9924 | 0.1103 | 800 | 1.7170 | 12.62 | 33.2 | 89.6443 | |
|
| 1.8646 | 0.1241 | 900 | 1.7252 | 11.98 | 30.77 | 97.8838 | |
|
| 1.7644 | 0.1379 | 1000 | 1.6832 | 10.87 | 31.0 | 109.1851 | |
|
| 1.692 | 0.1517 | 1100 | 1.6837 | 13.05 | 34.46 | 93.3814 | |
|
| 1.7044 | 0.1655 | 1200 | 1.5527 | 20.95 | 37.42 | 75.2364 | |
|
| 1.6824 | 0.1793 | 1300 | 1.5611 | 14.91 | 35.56 | 92.6159 | |
|
| 1.6557 | 0.1931 | 1400 | 1.5554 | 14.0 | 36.54 | 99.8199 | |
|
| 1.5456 | 0.2069 | 1500 | 1.5058 | 19.72 | 39.81 | 83.5660 | |
|
| 1.3755 | 0.2207 | 1600 | 1.5039 | 18.04 | 37.95 | 82.9806 | |
|
| 1.3959 | 0.2345 | 1700 | 1.4374 | 17.01 | 39.5 | 85.2319 | |
|
| 1.5012 | 0.2483 | 1800 | 1.4242 | 14.93 | 39.24 | 114.4079 | |
|
| 1.4278 | 0.2621 | 1900 | 1.3904 | 23.85 | 42.69 | 73.0302 | |
|
| 1.3285 | 0.2759 | 2000 | 1.4493 | 17.7 | 37.23 | 83.8811 | |
|
| 1.2655 | 0.2897 | 2100 | 1.3661 | 20.1 | 40.32 | 79.7839 | |
|
| 1.2074 | 0.3034 | 2200 | 1.3387 | 24.45 | 43.79 | 72.9851 | |
|
| 1.1893 | 0.3172 | 2300 | 1.3308 | 21.45 | 42.61 | 82.3953 | |
|
| 1.1236 | 0.3310 | 2400 | 1.3050 | 22.77 | 44.17 | 77.3075 | |
|
| 1.0934 | 0.3448 | 2500 | 1.2793 | 25.54 | 46.32 | 72.2647 | |
|
| 1.06 | 0.3586 | 2600 | 1.2396 | 28.27 | 47.32 | 65.6911 | |
|
| 1.0327 | 0.3724 | 2700 | 1.2577 | 28.45 | 47.01 | 67.3570 | |
|
| 1.1623 | 0.3862 | 2800 | 1.2194 | 24.54 | 47.43 | 73.6155 | |
|
| 1.0215 | 0.4 | 2900 | 1.2039 | 27.4 | 49.6 | 69.2481 | |
|
| 0.9185 | 0.4138 | 3000 | 1.1724 | 27.04 | 49.24 | 67.8973 | |
|
| 0.9003 | 0.4276 | 3100 | 1.1674 | 31.08 | 50.11 | 63.8001 | |
|
| 0.9839 | 0.4414 | 3200 | 1.1580 | 30.24 | 50.63 | 64.5655 | |
|
| 0.9396 | 0.4552 | 3300 | 1.1202 | 30.79 | 51.72 | 64.9257 | |
|
| 0.9051 | 0.4690 | 3400 | 1.1180 | 30.34 | 53.08 | 66.4566 | |
|
| 0.8621 | 0.4828 | 3500 | 1.1042 | 33.3 | 53.86 | 60.7834 | |
|
| 0.8236 | 0.4966 | 3600 | 1.1070 | 32.77 | 53.21 | 62.0441 | |
|
| 0.829 | 0.5103 | 3700 | 1.0771 | 32.49 | 54.21 | 62.5844 | |
|
| 0.8375 | 0.5241 | 3800 | 1.0780 | 32.27 | 53.98 | 63.0797 | |
|
| 0.8206 | 0.5379 | 3900 | 1.0615 | 33.26 | 55.07 | 61.6389 | |
|
| 0.8059 | 0.5517 | 4000 | 1.0552 | 33.24 | 55.16 | 61.5038 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|