metadata
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
- ymoslem/Tatoeba-Speech-Irish
- ymoslem/Wikimedia-Speech-Irish
metrics:
- bleu
- wer
model-index:
- name: Whisper Medium GA-EN Speech Translation
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia
type: ymoslem/IWSLT2023-GA-EN
metrics:
- name: Bleu
type: bleu
value: 33.79
- name: Wer
type: wer
value: 61.68392615938766
Whisper Medium GA-EN Speech Translation
This model is a fine-tuned version of openai/whisper-medium on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. It achieves the following results on the evaluation set:
- Loss: 1.3818
- Bleu: 33.79
- Chrf: 51.67
- Wer: 61.6839
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer |
---|---|---|---|---|---|---|
2.4382 | 0.0109 | 100 | 3.07 | 16.85 | 2.1114 | 171.0491 |
2.6151 | 0.0219 | 200 | 6.25 | 23.02 | 2.0207 | 126.9698 |
2.5699 | 0.0328 | 300 | 5.71 | 24.03 | 1.8660 | 155.5606 |
2.3084 | 0.0438 | 400 | 9.87 | 28.45 | 1.8084 | 129.0860 |
2.3327 | 0.0547 | 500 | 12.01 | 31.92 | 1.7823 | 102.7915 |
2.1495 | 0.0657 | 600 | 13.97 | 32.4 | 1.7238 | 98.6042 |
2.2164 | 0.0766 | 700 | 11.21 | 33.19 | 1.6538 | 146.0153 |
2.0071 | 0.0876 | 800 | 14.34 | 35.72 | 1.7038 | 96.9383 |
1.8334 | 0.0985 | 900 | 16.51 | 37.23 | 1.6329 | 96.8032 |
1.8359 | 0.1095 | 1000 | 17.87 | 35.94 | 1.6637 | 84.4665 |
1.7703 | 0.1204 | 1100 | 19.54 | 39.02 | 1.5626 | 79.7839 |
1.5805 | 0.1314 | 1200 | 20.19 | 40.4 | 1.5618 | 77.8028 |
1.4545 | 0.1423 | 1300 | 13.88 | 35.53 | 1.5599 | 112.5619 |
1.5177 | 0.1533 | 1400 | 18.79 | 40.11 | 1.4880 | 84.6916 |
1.6335 | 0.1642 | 1500 | 16.41 | 38.64 | 1.4996 | 96.9833 |
1.3809 | 0.1752 | 1600 | 18.3 | 40.17 | 1.4739 | 101.8910 |
1.2694 | 0.1861 | 1700 | 22.53 | 43.15 | 1.4498 | 76.9923 |
1.2321 | 0.1970 | 1800 | 19.92 | 42.59 | 1.4163 | 84.6015 |
1.1969 | 0.2080 | 1900 | 21.63 | 44.92 | 1.4137 | 85.3670 |
1.2023 | 0.2189 | 2000 | 20.42 | 41.57 | 1.3530 | 82.8906 |
1.1676 | 0.2299 | 2100 | 22.82 | 44.23 | 1.3723 | 78.1180 |
1.0332 | 0.2408 | 2200 | 26.73 | 44.75 | 1.3641 | 70.2386 |
0.8589 | 0.2518 | 2300 | 26.94 | 46.89 | 1.3344 | 72.7600 |
0.9829 | 0.2627 | 2400 | 28.15 | 47.21 | 1.3181 | 69.1130 |
0.8228 | 0.2737 | 2500 | 26.98 | 47.41 | 1.3049 | 74.0207 |
0.7667 | 0.2846 | 2600 | 30.0 | 49.42 | 1.2698 | 65.1058 |
0.8749 | 0.2956 | 2700 | 27.91 | 47.67 | 1.2878 | 66.9518 |
0.7504 | 0.3065 | 2800 | 32.03 | 50.35 | 1.2670 | 63.6650 |
0.7069 | 0.3175 | 2900 | 30.7 | 49.53 | 1.2771 | 64.4304 |
0.7199 | 0.3284 | 3000 | 30.21 | 48.93 | 1.2658 | 65.5561 |
0.6207 | 0.3394 | 3100 | 30.82 | 49.11 | 1.2687 | 66.0063 |
0.5995 | 0.3503 | 3200 | 31.99 | 50.94 | 1.2207 | 62.9446 |
0.6294 | 0.3612 | 3300 | 31.05 | 50.85 | 1.2422 | 64.7006 |
0.4612 | 0.3722 | 3400 | 33.1 | 51.82 | 1.2203 | 61.9090 |
0.5138 | 0.3831 | 3500 | 32.08 | 51.86 | 1.2007 | 63.0797 |
0.5059 | 0.3941 | 3600 | 31.8 | 51.19 | 1.2130 | 63.9352 |
0.417 | 0.4050 | 3700 | 32.45 | 51.41 | 1.1975 | 62.2692 |
0.2958 | 0.4160 | 3800 | 29.29 | 51.39 | 1.2046 | 62.7645 |
0.393 | 0.4269 | 3900 | 28.95 | 51.45 | 1.1968 | 63.1697 |
0.3858 | 0.4379 | 4000 | 29.54 | 51.58 | 1.1929 | 62.4043 |
0.5416 | 0.4488 | 4100 | 1.3522 | 27.29 | 43.94 | 67.9424 |
0.6644 | 0.4598 | 4200 | 1.4191 | 23.16 | 44.45 | 77.3976 |
0.5246 | 0.4707 | 4300 | 1.4221 | 22.26 | 44.91 | 77.2625 |
0.614 | 0.4817 | 4400 | 1.3956 | 26.9 | 46.15 | 70.4638 |
0.5973 | 0.4926 | 4500 | 1.4152 | 25.55 | 45.51 | 76.7222 |
0.544 | 0.5036 | 4600 | 1.4091 | 23.54 | 47.87 | 79.1085 |
0.5975 | 0.5145 | 4700 | 1.4644 | 21.85 | 42.69 | 78.5682 |
0.4675 | 0.5255 | 4800 | 1.4598 | 22.93 | 43.69 | 76.9023 |
0.7959 | 0.5364 | 4900 | 1.3884 | 24.91 | 44.98 | 74.5610 |
0.5936 | 0.5473 | 5000 | 1.4235 | 26.91 | 44.88 | 69.0680 |
0.4631 | 0.5583 | 5100 | 1.4002 | 25.77 | 45.81 | 74.0207 |
0.5188 | 0.5692 | 5200 | 1.4405 | 28.37 | 45.48 | 66.2765 |
0.4675 | 0.5802 | 5300 | 1.4045 | 21.1 | 43.11 | 92.1207 |
0.4214 | 0.5911 | 5400 | 1.4250 | 25.62 | 44.82 | 72.2197 |
0.4592 | 0.6021 | 5500 | 1.4107 | 27.24 | 46.44 | 70.0585 |
0.4809 | 0.6130 | 5600 | 1.3896 | 27.93 | 47.42 | 69.5182 |
0.4364 | 0.6240 | 5700 | 1.3808 | 25.84 | 47.47 | 77.6227 |
0.3333 | 0.6349 | 5800 | 1.4203 | 26.46 | 47.08 | 72.4899 |
0.3345 | 0.6459 | 5900 | 1.4763 | 23.1 | 44.6 | 81.2247 |
0.3368 | 0.6568 | 6000 | 1.4182 | 24.55 | 45.76 | 80.5493 |
0.3061 | 0.6678 | 6100 | 1.4218 | 23.1 | 45.97 | 81.3597 |
0.324 | 0.6787 | 6200 | 1.4453 | 28.26 | 47.06 | 67.5822 |
0.2667 | 0.6897 | 6300 | 1.4494 | 27.87 | 46.14 | 69.0230 |
0.2845 | 0.7006 | 6400 | 1.4448 | 26.39 | 46.72 | 71.4543 |
0.3125 | 0.7115 | 6500 | 1.4643 | 27.81 | 46.45 | 70.0135 |
0.264 | 0.7225 | 6600 | 1.4244 | 26.27 | 47.75 | 72.7600 |
0.2426 | 0.7334 | 6700 | 1.4081 | 25.84 | 46.68 | 76.4070 |
0.2174 | 0.7444 | 6800 | 1.4036 | 30.67 | 47.92 | 65.8262 |
0.2265 | 0.7553 | 6900 | 1.4174 | 28.11 | 49.12 | 71.2292 |
0.2016 | 0.7663 | 7000 | 1.4341 | 30.43 | 49.47 | 65.9163 |
0.1865 | 0.7772 | 7100 | 1.3690 | 32.05 | 49.5 | 63.1697 |
0.2148 | 0.7882 | 7200 | 1.3603 | 32.29 | 49.91 | 63.8901 |
0.2126 | 0.7991 | 7300 | 1.4046 | 32.07 | 49.31 | 63.6650 |
0.1594 | 0.8101 | 7400 | 1.4122 | 29.94 | 47.48 | 65.5110 |
0.1295 | 0.8210 | 7500 | 1.4243 | 30.14 | 49.79 | 65.7812 |
0.1378 | 0.8320 | 7600 | 1.4334 | 31.23 | 49.42 | 65.9613 |
0.1701 | 0.8429 | 7700 | 1.4149 | 31.04 | 49.95 | 65.6461 |
0.1102 | 0.8539 | 7800 | 1.4082 | 31.37 | 50.2 | 63.7100 |
0.1267 | 0.8648 | 7900 | 1.3642 | 32.86 | 50.83 | 60.8285 |
0.1384 | 0.8758 | 8000 | 1.3860 | 33.47 | 49.61 | 59.8829 |
0.1128 | 0.8867 | 8100 | 1.3840 | 32.78 | 50.04 | 61.8190 |
0.1197 | 0.8976 | 8200 | 1.3641 | 33.69 | 50.94 | 61.8190 |
0.1181 | 0.9086 | 8300 | 1.3913 | 32.0 | 49.65 | 63.5299 |
0.0866 | 0.9195 | 8400 | 1.4171 | 30.39 | 48.48 | 68.0324 |
0.0784 | 0.9305 | 8500 | 1.3850 | 32.27 | 49.32 | 63.3949 |
0.092 | 0.9414 | 8600 | 1.3880 | 33.78 | 51.13 | 61.2787 |
0.0685 | 0.9524 | 8700 | 1.3876 | 34.33 | 51.23 | 61.1887 |
0.0783 | 0.9633 | 8800 | 1.4010 | 33.4 | 48.9 | 62.5844 |
0.0735 | 0.9743 | 8900 | 1.4035 | 33.72 | 49.01 | 61.5038 |
0.0875 | 0.9852 | 9000 | 1.4064 | 30.44 | 49.06 | 67.5371 |
0.0822 | 0.9962 | 9100 | 1.3803 | 34.64 | 51.51 | 60.5133 |
0.041 | 1.0071 | 9200 | 1.3678 | 34.66 | 52.06 | 59.4327 |
0.0351 | 1.0181 | 9300 | 1.3739 | 33.88 | 51.16 | 61.3688 |
0.0368 | 1.0290 | 9400 | 1.3846 | 35.2 | 51.73 | 60.4232 |
0.035 | 1.0400 | 9500 | 1.3753 | 34.23 | 51.32 | 60.8735 |
0.0277 | 1.0509 | 9600 | 1.3788 | 35.0 | 52.59 | 60.0180 |
0.0247 | 1.0619 | 9700 | 1.3914 | 34.69 | 51.7 | 60.2882 |
0.0321 | 1.0728 | 9800 | 1.3804 | 34.63 | 51.91 | 60.6033 |
0.0286 | 1.0837 | 9900 | 1.3795 | 33.92 | 51.64 | 61.8640 |
0.0239 | 1.0947 | 10000 | 1.3818 | 33.79 | 51.67 | 61.6839 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1