Edit model card

bert-petco-filtered_fontsize-ctr

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0022
  • Mse: 0.0022
  • Rmse: 0.0464
  • Mae: 0.0364
  • R2: 0.4468
  • Accuracy: 0.8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mse Rmse Mae R2 Accuracy
0.0403 1.0 15 0.0119 0.0119 0.1091 0.0921 -2.0564 0.3
0.0167 2.0 30 0.0031 0.0031 0.0555 0.0449 0.2100 0.6
0.0125 3.0 45 0.0037 0.0037 0.0610 0.0514 0.0429 0.5167
0.0098 4.0 60 0.0026 0.0026 0.0508 0.0407 0.3377 0.6333
0.0105 5.0 75 0.0029 0.0029 0.0543 0.0413 0.2439 0.7
0.0083 6.0 90 0.0029 0.0029 0.0535 0.0392 0.2644 0.7
0.0052 7.0 105 0.0026 0.0026 0.0512 0.0432 0.3280 0.7
0.0044 8.0 120 0.0023 0.0023 0.0482 0.0376 0.4025 0.7667
0.0045 9.0 135 0.0037 0.0037 0.0605 0.0519 0.0601 0.4333
0.0033 10.0 150 0.0028 0.0028 0.0525 0.0367 0.2909 0.7
0.0035 11.0 165 0.0024 0.0024 0.0487 0.0403 0.3918 0.7667
0.003 12.0 180 0.0022 0.0022 0.0471 0.0367 0.4305 0.75
0.0023 13.0 195 0.0022 0.0022 0.0464 0.0364 0.4468 0.8
0.0022 14.0 210 0.0024 0.0024 0.0489 0.0387 0.3863 0.7167
0.0025 15.0 225 0.0024 0.0024 0.0492 0.0379 0.3792 0.75
0.0021 16.0 240 0.0025 0.0025 0.0497 0.0358 0.3667 0.7833
0.0021 17.0 255 0.0024 0.0024 0.0486 0.0366 0.3943 0.7667
0.0017 18.0 270 0.0024 0.0024 0.0485 0.0354 0.3950 0.7833
0.0017 19.0 285 0.0028 0.0028 0.0529 0.0388 0.2819 0.75
0.0018 20.0 300 0.0025 0.0025 0.0496 0.0363 0.3676 0.7667

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
1
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yimiwang/bert-petco-filtered_fontsize-ctr

Finetuned
(2072)
this model