Edit model card

Model Card for Model ID

This model is an instruction-tuned LLaMa model with 33B parameters, with specialities in medical QA and code instruction.

Model Details

  • Model type: LlamaForCausalLM
  • Language(s) (NLP): English
  • License: As a Llama-derivative, this model cannot be used commercially.
  • Finetuned from model (QLoRA): huggyllama/llama-30b

Training Details

Training Data

Converted the following datasets to alpaca:instruction format.

  1. ehartford/dolphin
  1. LinhDuong/chatdoctor-200k
  • Refined dataset sourced from icliniq medical QA forum
  1. sahil2801/code_instructions_120k
  • Code instruction dataset generously created by Sahil Chaudhary from ThreeSixty AI
  1. c-s-ale/dolly-15k-instruction-alpaca-format
  • Dolly 15k is a general instruction dataset generated by employees of Databricks.

Training Procedure

Trained using axolotl QLoRa on RunPod 8x A6000 on Community Cloud for 1 epochs (~23 hours - ~$110).

axolotl training config:
base_model: huggyllama/llama-30b
base_model_config: huggyllama/llama-30b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false

push_dataset_to_hub:
hub_model_id:
hf_use_auth_token:

datasets:
  - path: ehartford/dolphin
    type: alpaca
    data_files:
      - flan1m-alpaca-uncensored.jsonl
      - flan5m-alpaca-uncensored.jsonl
    shards: 25
  - path: sahil2801/code_instructions_120k
    type: alpaca
  - path: LinhDuong/chatdoctor-200k
    type: alpaca
    shards: 2
  - path: c-s-ale/dolly-15k-instruction-alpaca-format
    type: alpaca

dataset_prepared_path: last_run_prepared
val_set_size: 0.01
adapter: qlora
lora_model_dir:
sequence_len: 2048
max_packed_sequence_len: 2048
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_mode: true
wandb_project: med-orca-instruct-33b
wandb_watch:
wandb_run_id:
wandb_log_model: 'openllama_checkpoint'
output_dir: /disk/med-instruct-33b
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_32bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 2
xformers_attention: true
flash_attention:
gptq_groupsize:
gptq_model_v1:
warmup_steps: 100
eval_steps: 20
save_steps:
debug:
deepspeed: true
weight_decay: 0.00001
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
Downloads last month
26
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train yhyhy3/med-orca-instruct-33b-GPTQ