nb-bert-FGN

This model is a fine-tuned version of NbAiLab/nb-bert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8455
  • F1-score: 0.8640

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 120 0.4694 0.8310
No log 2.0 240 0.4810 0.8225
No log 3.0 360 0.3942 0.8528
No log 4.0 480 0.7082 0.7709
0.4938 5.0 600 0.7041 0.8333
0.4938 6.0 720 0.6616 0.8528
0.4938 7.0 840 0.9447 0.8226
0.4938 8.0 960 0.8971 0.8464
0.2424 9.0 1080 0.9245 0.8348
0.2424 10.0 1200 0.8455 0.8640
0.2424 11.0 1320 0.8109 0.8571
0.2424 12.0 1440 1.0194 0.8566
0.1235 13.0 1560 0.9609 0.8533
0.1235 14.0 1680 1.0777 0.8435
0.1235 15.0 1800 1.1128 0.8450
0.1235 16.0 1920 1.0391 0.8582
0.0621 17.0 2040 1.1569 0.8507
0.0621 18.0 2160 1.1449 0.8492
0.0621 19.0 2280 1.1715 0.8492
0.0621 20.0 2400 1.1702 0.8564

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
22
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/nb-bert-FGN

Finetuned
(4)
this model