results

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0114
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 5 0.6931 1.0
0.7541 2.0 10 0.5361 1.0
0.7541 3.0 15 0.3814 1.0
0.4427 4.0 20 0.2867 1.0
0.4427 5.0 25 0.2026 1.0
0.2459 6.0 30 0.1390 1.0
0.2459 7.0 35 0.0953 1.0
0.123 8.0 40 0.0653 1.0
0.123 9.0 45 0.0450 1.0
0.0595 10.0 50 0.0313 1.0
0.0595 11.0 55 0.0250 1.0
0.0331 12.0 60 0.0215 1.0
0.0331 13.0 65 0.0171 1.0
0.0242 14.0 70 0.0146 1.0
0.0242 15.0 75 0.0133 1.0
0.0191 16.0 80 0.0127 1.0
0.0191 17.0 85 0.0122 1.0
0.0162 18.0 90 0.0118 1.0
0.0162 19.0 95 0.0115 1.0
0.015 20.0 100 0.0114 1.0

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ychahwan/results

Finetuned
(2370)
this model