SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the allstats-semantic-search-synthetic-dataset-v1 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-search-mini-v1")
# Run inference
sentences = [
'perubahan nilai tukar petani bulan mei 2017',
'Perkembangan Nilai Tukar Petani Mei 2017',
'Statistik Restoran/Rumah Makan Tahun 2014',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-search-mini-v1-ev
andallstat-semantic-search-mini-v1-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstats-semantic-search-mini-v1-ev | allstat-semantic-search-mini-v1-test |
---|---|---|
pearson_cosine | 0.9942 | 0.9945 |
spearman_cosine | 0.9501 | 0.9513 |
Training Details
Training Dataset
allstats-semantic-search-synthetic-dataset-v1
- Dataset: allstats-semantic-search-synthetic-dataset-v1 at b13c0a7
- Size: 212,940 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 11.46 tokens
- max: 34 tokens
- min: 5 tokens
- mean: 14.47 tokens
- max: 54 tokens
- min: 0.0
- mean: 0.5
- max: 1.05
- Samples:
query doc label aDta industri besar dan sedang Indonesia 2008
Statistik Industri Besar dan Sedang Indonesia 2008
0.9
profil bisnis konstruksi individu jawa barat 2022
Statistik Industri Manufaktur Indonesia 2015 - Bahan Baku
0.15
data statistik ekonomi indonesia
Nilai Tukar Valuta Asing di Indonesia 2014
0.08
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
allstats-semantic-search-synthetic-dataset-v1
- Dataset: allstats-semantic-search-synthetic-dataset-v1 at b13c0a7
- Size: 26,618 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 11.38 tokens
- max: 34 tokens
- min: 4 tokens
- mean: 14.63 tokens
- max: 55 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
query doc label tahun berapa ekspor naik 2,37% dan impor naik 30,30%?
Bulan November 2006 Ekspor Naik 2,37 % dan Impor Naik 30,30 %
1.0
Berapa produksi padi pada tahun 2023?
Produksi padi tahun lainnya
0.0
data statistik solus per aqua 2015
Statistik Solus Per Aqua (SPA) 2015
0.97
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 20warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 20max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-mini-v1-ev_spearman_cosine | allstat-semantic-search-mini-v1-test_spearman_cosine |
---|---|---|---|---|---|
0.1502 | 500 | 0.0794 | 0.0524 | 0.6869 | - |
0.3005 | 1000 | 0.0465 | 0.0364 | 0.7262 | - |
0.4507 | 1500 | 0.0339 | 0.0267 | 0.7638 | - |
0.6010 | 2000 | 0.0263 | 0.0222 | 0.7804 | - |
0.7512 | 2500 | 0.0228 | 0.0197 | 0.7883 | - |
0.9014 | 3000 | 0.0201 | 0.0193 | 0.7894 | - |
1.0517 | 3500 | 0.018 | 0.0166 | 0.8000 | - |
1.2019 | 4000 | 0.0156 | 0.0154 | 0.7927 | - |
1.3522 | 4500 | 0.0148 | 0.0146 | 0.8211 | - |
1.5024 | 5000 | 0.014 | 0.0137 | 0.8137 | - |
1.6526 | 5500 | 0.014 | 0.0132 | 0.8160 | - |
1.8029 | 6000 | 0.0132 | 0.0125 | 0.8309 | - |
1.9531 | 6500 | 0.0127 | 0.0117 | 0.8221 | - |
2.1034 | 7000 | 0.0115 | 0.0111 | 0.8269 | - |
2.2536 | 7500 | 0.0106 | 0.0135 | 0.8157 | - |
2.4038 | 8000 | 0.0101 | 0.0104 | 0.8423 | - |
2.5541 | 8500 | 0.0098 | 0.0100 | 0.8329 | - |
2.7043 | 9000 | 0.0093 | 0.0095 | 0.8415 | - |
2.8546 | 9500 | 0.0085 | 0.0089 | 0.8517 | - |
3.0048 | 10000 | 0.0082 | 0.0086 | 0.8537 | - |
3.1550 | 10500 | 0.0066 | 0.0083 | 0.8508 | - |
3.3053 | 11000 | 0.0073 | 0.0082 | 0.8450 | - |
3.4555 | 11500 | 0.0071 | 0.0083 | 0.8574 | - |
3.6058 | 12000 | 0.0071 | 0.0082 | 0.8486 | - |
3.7560 | 12500 | 0.0068 | 0.0079 | 0.8610 | - |
3.9062 | 13000 | 0.0065 | 0.0072 | 0.8649 | - |
4.0565 | 13500 | 0.0062 | 0.0069 | 0.8602 | - |
4.2067 | 14000 | 0.0052 | 0.0068 | 0.8680 | - |
4.3570 | 14500 | 0.0052 | 0.0066 | 0.8639 | - |
4.5072 | 15000 | 0.0051 | 0.0069 | 0.8664 | - |
4.6575 | 15500 | 0.0051 | 0.0061 | 0.8782 | - |
4.8077 | 16000 | 0.0052 | 0.0061 | 0.8721 | - |
4.9579 | 16500 | 0.0051 | 0.0058 | 0.8781 | - |
5.1082 | 17000 | 0.0044 | 0.0058 | 0.8788 | - |
5.2584 | 17500 | 0.0039 | 0.0056 | 0.8803 | - |
5.4087 | 18000 | 0.0042 | 0.0056 | 0.8807 | - |
5.5589 | 18500 | 0.0041 | 0.0055 | 0.8818 | - |
5.7091 | 19000 | 0.004 | 0.0051 | 0.8865 | - |
5.8594 | 19500 | 0.0042 | 0.0052 | 0.8848 | - |
6.0096 | 20000 | 0.0039 | 0.0050 | 0.8859 | - |
6.1599 | 20500 | 0.0032 | 0.0049 | 0.8882 | - |
6.3101 | 21000 | 0.0034 | 0.0048 | 0.8924 | - |
6.4603 | 21500 | 0.0033 | 0.0049 | 0.8943 | - |
6.6106 | 22000 | 0.0033 | 0.0051 | 0.8862 | - |
6.7608 | 22500 | 0.0036 | 0.0046 | 0.8946 | - |
6.9111 | 23000 | 0.0034 | 0.0045 | 0.8968 | - |
7.0613 | 23500 | 0.0027 | 0.0042 | 0.9026 | - |
7.2115 | 24000 | 0.0026 | 0.0042 | 0.9010 | - |
7.3618 | 24500 | 0.0026 | 0.0044 | 0.9000 | - |
7.5120 | 25000 | 0.0029 | 0.0043 | 0.8946 | - |
7.6623 | 25500 | 0.0028 | 0.0041 | 0.9044 | - |
7.8125 | 26000 | 0.0027 | 0.0040 | 0.9065 | - |
7.9627 | 26500 | 0.0028 | 0.0039 | 0.9025 | - |
8.1130 | 27000 | 0.0022 | 0.0037 | 0.9064 | - |
8.2632 | 27500 | 0.0021 | 0.0037 | 0.9094 | - |
8.4135 | 28000 | 0.0023 | 0.0037 | 0.9079 | - |
8.5637 | 28500 | 0.0022 | 0.0038 | 0.9018 | - |
8.7139 | 29000 | 0.0023 | 0.0038 | 0.9082 | - |
8.8642 | 29500 | 0.0024 | 0.0035 | 0.9127 | - |
9.0144 | 30000 | 0.0022 | 0.0034 | 0.9143 | - |
9.1647 | 30500 | 0.0018 | 0.0034 | 0.9151 | - |
9.3149 | 31000 | 0.002 | 0.0034 | 0.9159 | - |
9.4651 | 31500 | 0.0019 | 0.0033 | 0.9159 | - |
9.6154 | 32000 | 0.0019 | 0.0033 | 0.9162 | - |
9.7656 | 32500 | 0.0021 | 0.0033 | 0.9180 | - |
9.9159 | 33000 | 0.0019 | 0.0030 | 0.9204 | - |
10.0661 | 33500 | 0.0018 | 0.0030 | 0.9216 | - |
10.2163 | 34000 | 0.0016 | 0.0030 | 0.9212 | - |
10.3666 | 34500 | 0.0015 | 0.0030 | 0.9206 | - |
10.5168 | 35000 | 0.0016 | 0.0032 | 0.9227 | - |
10.6671 | 35500 | 0.0017 | 0.0029 | 0.9220 | - |
10.8173 | 36000 | 0.0016 | 0.0031 | 0.9255 | - |
10.9675 | 36500 | 0.0018 | 0.0029 | 0.9241 | - |
11.1178 | 37000 | 0.0013 | 0.0030 | 0.9261 | - |
11.2680 | 37500 | 0.0013 | 0.0029 | 0.9264 | - |
11.4183 | 38000 | 0.0015 | 0.0030 | 0.9269 | - |
11.5685 | 38500 | 0.0014 | 0.0028 | 0.9272 | - |
11.7188 | 39000 | 0.0014 | 0.0029 | 0.9277 | - |
11.8690 | 39500 | 0.0014 | 0.0028 | 0.9288 | - |
12.0192 | 40000 | 0.0014 | 0.0028 | 0.9300 | - |
12.1695 | 40500 | 0.0011 | 0.0027 | 0.9327 | - |
12.3197 | 41000 | 0.0012 | 0.0028 | 0.9323 | - |
12.4700 | 41500 | 0.0013 | 0.0028 | 0.9324 | - |
12.6202 | 42000 | 0.0014 | 0.0027 | 0.9327 | - |
12.7704 | 42500 | 0.0013 | 0.0027 | 0.9323 | - |
12.9207 | 43000 | 0.0013 | 0.0026 | 0.9337 | - |
13.0709 | 43500 | 0.0011 | 0.0025 | 0.9345 | - |
13.2212 | 44000 | 0.0011 | 0.0026 | 0.9353 | - |
13.3714 | 44500 | 0.0011 | 0.0025 | 0.9360 | - |
13.5216 | 45000 | 0.001 | 0.0026 | 0.9347 | - |
13.6719 | 45500 | 0.0011 | 0.0025 | 0.9364 | - |
13.8221 | 46000 | 0.0011 | 0.0025 | 0.9373 | - |
13.9724 | 46500 | 0.0011 | 0.0025 | 0.9374 | - |
14.1226 | 47000 | 0.001 | 0.0024 | 0.9390 | - |
14.2728 | 47500 | 0.001 | 0.0024 | 0.9389 | - |
14.4231 | 48000 | 0.001 | 0.0024 | 0.9388 | - |
14.5733 | 48500 | 0.001 | 0.0025 | 0.9394 | - |
14.7236 | 49000 | 0.0009 | 0.0024 | 0.9413 | - |
14.8738 | 49500 | 0.0009 | 0.0024 | 0.9415 | - |
15.0240 | 50000 | 0.0009 | 0.0024 | 0.9419 | - |
15.1743 | 50500 | 0.0009 | 0.0024 | 0.9421 | - |
15.3245 | 51000 | 0.0009 | 0.0025 | 0.9414 | - |
15.4748 | 51500 | 0.0008 | 0.0024 | 0.9422 | - |
15.625 | 52000 | 0.0009 | 0.0024 | 0.9423 | - |
15.7752 | 52500 | 0.0008 | 0.0023 | 0.9436 | - |
15.9255 | 53000 | 0.0009 | 0.0023 | 0.9442 | - |
16.0757 | 53500 | 0.0008 | 0.0023 | 0.9449 | - |
16.2260 | 54000 | 0.0008 | 0.0023 | 0.9451 | - |
16.3762 | 54500 | 0.0008 | 0.0023 | 0.9448 | - |
16.5264 | 55000 | 0.0008 | 0.0023 | 0.9446 | - |
16.6767 | 55500 | 0.0008 | 0.0023 | 0.9455 | - |
16.8269 | 56000 | 0.0008 | 0.0023 | 0.9458 | - |
16.9772 | 56500 | 0.0008 | 0.0023 | 0.9458 | - |
17.1274 | 57000 | 0.0007 | 0.0023 | 0.9469 | - |
17.2776 | 57500 | 0.0007 | 0.0023 | 0.9470 | - |
17.4279 | 58000 | 0.0007 | 0.0023 | 0.9469 | - |
17.5781 | 58500 | 0.0007 | 0.0022 | 0.9478 | - |
17.7284 | 59000 | 0.0007 | 0.0022 | 0.9480 | - |
17.8786 | 59500 | 0.0007 | 0.0023 | 0.9479 | - |
18.0288 | 60000 | 0.0007 | 0.0022 | 0.9480 | - |
18.1791 | 60500 | 0.0006 | 0.0022 | 0.9484 | - |
18.3293 | 61000 | 0.0006 | 0.0022 | 0.9485 | - |
18.4796 | 61500 | 0.0007 | 0.0022 | 0.9490 | - |
18.6298 | 62000 | 0.0007 | 0.0022 | 0.9492 | - |
18.7800 | 62500 | 0.0007 | 0.0022 | 0.9493 | - |
18.9303 | 63000 | 0.0007 | 0.0022 | 0.9493 | - |
19.0805 | 63500 | 0.0006 | 0.0022 | 0.9493 | - |
19.2308 | 64000 | 0.0006 | 0.0022 | 0.9495 | - |
19.3810 | 64500 | 0.0006 | 0.0022 | 0.9497 | - |
19.5312 | 65000 | 0.0006 | 0.0022 | 0.9498 | - |
19.6815 | 65500 | 0.0006 | 0.0022 | 0.9498 | - |
19.8317 | 66000 | 0.0006 | 0.0022 | 0.9500 | - |
19.9820 | 66500 | 0.0006 | 0.0022 | 0.9501 | - |
20.0 | 66560 | - | - | - | 0.9513 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.2.2+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yahyaabd/allstats-semantic-search-mini-v1-old
Dataset used to train yahyaabd/allstats-semantic-search-mini-v1-old
Evaluation results
- Pearson Cosine on allstats semantic search mini v1 evself-reported0.994
- Spearman Cosine on allstats semantic search mini v1 evself-reported0.950
- Pearson Cosine on allstat semantic search mini v1 testself-reported0.994
- Spearman Cosine on allstat semantic search mini v1 testself-reported0.951