xekri's picture
End of training
353ec05
|
raw
history blame
3.54 kB
metadata
language:
  - eo
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_13_0
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-common_voice_13_0-eo-10
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - EO
          type: common_voice_13_0
          config: eo
          split: validation
          args: 'Config: eo, Training split: train, Eval split: validation'
        metrics:
          - name: Wer
            type: wer
            value: 0.0656526475637132

wav2vec2-common_voice_13_0-eo-10

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - EO dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0453
  • Cer: 0.0118
  • Wer: 0.0657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
2.9894 0.22 1000 1.0 2.9257 1.0
0.7104 0.44 2000 0.0457 0.2129 0.2538
0.2853 0.67 3000 0.0274 0.1109 0.1583
0.2327 0.89 4000 0.0231 0.0909 0.1320
0.1917 1.11 5000 0.0206 0.0775 0.1188
0.1803 1.33 6000 0.0184 0.0698 0.1055
0.1661 1.56 7000 0.0169 0.0645 0.0961
0.1635 1.78 8000 0.0170 0.0639 0.0964
0.1555 2.0 9000 0.0156 0.0592 0.0881
0.1386 2.22 10000 0.0147 0.0559 0.0821
0.1338 2.45 11000 0.0146 0.0548 0.0831
0.1307 2.67 12000 0.0137 0.0529 0.0759
0.1297 2.89 13000 0.0504 0.0134 0.0745
0.1201 3.11 14000 0.0499 0.0131 0.0734
0.1152 3.34 15000 0.0484 0.0128 0.0712
0.1144 3.56 16000 0.0477 0.0125 0.0695
0.1179 3.78 17000 0.0468 0.0122 0.0679
0.1112 4.0 18000 0.0468 0.0121 0.0676
0.1141 4.23 19000 0.0462 0.0121 0.0668
0.1085 4.45 20000 0.0458 0.0119 0.0664
0.105 4.67 21000 0.0456 0.0119 0.0660
0.1072 4.89 22000 0.0454 0.0119 0.0658

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3