brabrant-xvii-ner

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0769
  • Precision: 0.7559
  • Recall: 0.7996
  • F1: 0.7771

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
No log 1.0 54 0.3302 0.0 0.0 0.0
No log 2.0 108 0.3255 0.0 0.0 0.0
No log 3.0 162 0.1749 0.2513 0.3489 0.2922
No log 4.0 216 0.0689 0.6692 0.7637 0.7134
No log 5.0 270 0.0610 0.7266 0.7776 0.7512
No log 6.0 324 0.0583 0.7556 0.7915 0.7731
No log 7.0 378 0.0585 0.7658 0.7988 0.7820
No log 8.0 432 0.0683 0.7043 0.8069 0.7521
No log 9.0 486 0.0698 0.7442 0.8171 0.7789
0.1553 10.0 540 0.0675 0.7409 0.8178 0.7775
0.1553 11.0 594 0.0689 0.7526 0.7835 0.7677
0.1553 12.0 648 0.0714 0.7372 0.7981 0.7664
0.1553 13.0 702 0.0717 0.7517 0.8018 0.7759
0.1553 14.0 756 0.0765 0.7606 0.8018 0.7806
0.1553 15.0 810 0.0769 0.7559 0.7996 0.7771

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.2
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
39
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for xaviergillard/brabrant-xvii-ner

Finetuned
(366)
this model