SentenceTransformer based on CocoRoF/ModernBERT-SimCSE_v02
This is a sentence-transformers model finetuned from CocoRoF/ModernBERT-SimCSE_v02. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: CocoRoF/ModernBERT-SimCSE_v02
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v03")
# Run inference
sentences = [
'버스가 바쁜 길을 따라 운전한다.',
'녹색 버스가 도로를 따라 내려간다.',
'그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts_dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8224 |
spearman_cosine | 0.822 |
pearson_euclidean | 0.7786 |
spearman_euclidean | 0.7816 |
pearson_manhattan | 0.7809 |
spearman_manhattan | 0.7847 |
pearson_dot | 0.7544 |
spearman_dot | 0.7435 |
pearson_max | 0.8224 |
spearman_max | 0.822 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 13.52 tokens
- max: 36 tokens
- min: 7 tokens
- mean: 13.41 tokens
- max: 32 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score 비행기가 이륙하고 있다.
비행기가 이륙하고 있다.
1.0
한 남자가 큰 플루트를 연주하고 있다.
남자가 플루트를 연주하고 있다.
0.76
한 남자가 피자에 치즈를 뿌려놓고 있다.
한 남자가 구운 피자에 치즈 조각을 뿌려놓고 있다.
0.76
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 20.38 tokens
- max: 52 tokens
- min: 6 tokens
- mean: 20.52 tokens
- max: 54 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score 안전모를 가진 한 남자가 춤을 추고 있다.
안전모를 쓴 한 남자가 춤을 추고 있다.
1.0
어린아이가 말을 타고 있다.
아이가 말을 타고 있다.
0.95
한 남자가 뱀에게 쥐를 먹이고 있다.
남자가 뱀에게 쥐를 먹이고 있다.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir
: Trueeval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 8learning_rate
: 1e-05num_train_epochs
: 10.0warmup_ratio
: 0.1push_to_hub
: Truehub_model_id
: CocoRoF/ModernBERT-SimCSE-multitask_v03hub_strategy
: checkpointbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Truedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: CocoRoF/ModernBERT-SimCSE-multitask_v03hub_strategy
: checkpointhub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
---|---|---|---|---|
0.2228 | 10 | 0.0283 | - | - |
0.4457 | 20 | 0.0344 | - | - |
0.6685 | 30 | 0.0305 | 0.0310 | 0.7939 |
0.8914 | 40 | 0.0489 | - | - |
1.1337 | 50 | 0.0382 | - | - |
1.3565 | 60 | 0.0271 | 0.0293 | 0.7994 |
1.5794 | 70 | 0.0344 | - | - |
1.8022 | 80 | 0.0382 | - | - |
2.0446 | 90 | 0.0419 | 0.0280 | 0.8059 |
2.2674 | 100 | 0.0244 | - | - |
2.4903 | 110 | 0.0307 | - | - |
2.7131 | 120 | 0.0291 | 0.0269 | 0.8108 |
2.9359 | 130 | 0.038 | - | - |
3.1783 | 140 | 0.0269 | - | - |
3.4011 | 150 | 0.0268 | 0.0262 | 0.8155 |
3.6240 | 160 | 0.0246 | - | - |
3.8468 | 170 | 0.0313 | - | - |
4.0891 | 180 | 0.0303 | 0.0259 | 0.8185 |
4.3120 | 190 | 0.0198 | - | - |
4.5348 | 200 | 0.0257 | - | - |
4.7577 | 210 | 0.0242 | 0.0255 | 0.8202 |
4.9805 | 220 | 0.0293 | - | - |
5.2228 | 230 | 0.0193 | - | - |
5.4457 | 240 | 0.0222 | 0.0254 | 0.8222 |
5.6685 | 250 | 0.0184 | - | - |
5.8914 | 260 | 0.0243 | - | - |
6.1337 | 270 | 0.0204 | 0.0254 | 0.8235 |
6.3565 | 280 | 0.0147 | - | - |
6.5794 | 290 | 0.0196 | - | - |
6.8022 | 300 | 0.0176 | 0.0253 | 0.8227 |
7.0446 | 310 | 0.0202 | - | - |
7.2674 | 320 | 0.0123 | - | - |
7.4903 | 330 | 0.0151 | 0.0254 | 0.8236 |
7.7131 | 340 | 0.0132 | - | - |
7.9359 | 350 | 0.0158 | - | - |
8.1783 | 360 | 0.0118 | 0.0256 | 0.8240 |
8.4011 | 370 | 0.0115 | - | - |
8.6240 | 380 | 0.0105 | - | - |
8.8468 | 390 | 0.0111 | 0.0256 | 0.8215 |
9.0891 | 400 | 0.011 | - | - |
9.3120 | 410 | 0.0076 | - | - |
9.5348 | 420 | 0.0091 | 0.0256 | 0.8220 |
9.7577 | 430 | 0.0075 | - | - |
9.9805 | 440 | 0.0093 | - | - |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.0
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for x2bee/ModernBERT-SimCSE-multitask_v03
Base model
answerdotai/ModernBERT-base
Finetuned
x2bee/ModernBERT-SimCSE_v02
Evaluation results
- Pearson Cosine on sts devself-reported0.822
- Spearman Cosine on sts devself-reported0.822
- Pearson Euclidean on sts devself-reported0.779
- Spearman Euclidean on sts devself-reported0.782
- Pearson Manhattan on sts devself-reported0.781
- Spearman Manhattan on sts devself-reported0.785
- Pearson Dot on sts devself-reported0.754
- Spearman Dot on sts devself-reported0.743
- Pearson Max on sts devself-reported0.822
- Spearman Max on sts devself-reported0.822