|
--- |
|
license: mit |
|
datasets: |
|
- yahma/alpaca-cleaned |
|
- teknium/GPT4-LLM-Cleaned |
|
- databricks/databricks-dolly-15k |
|
--- |
|
|
|
|
|
This repo contains a low-rank adapter for LLaMA-13b |
|
fit on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset. |
|
|
|
This version of the weights was trained with the following hyperparameters: |
|
|
|
- Epochs: 10 (load from best epoch) |
|
- Batch size: 128 |
|
- Cutoff length: 1024 |
|
- Learning rate: 2e-5 |
|
- Lora _r_: 16 |
|
- Lora target modules: q_proj, k_proj, v_proj, o_proj |
|
|
|
|
|
That is trained by using RTX 3090 * 8 pcs around 10 hrs.: |
|
|
|
```bash |
|
WORLD_SIZE=8 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 nohup torchrun --nproc_per_node=8 --master_port=1234 finetune.py \ |
|
--base_model 'decapoda-research/llama-13b-hf' \ |
|
--data_path './alpaca_data_gpt4_dolly15k.json' \ |
|
--output_dir './lora-alpaca-13B-gpt4-dolly15k' \ |
|
--batch_size 128 \ |
|
--micro_batch_size 4 \ |
|
--num_epochs 10 \ |
|
--learning_rate 2e-5 \ |
|
--cutoff_len 1024 \ |
|
--val_set_size 2000 \ |
|
--lora_r 4 \ |
|
--lora_alpha 16 \ |
|
--lora_dropout 0.05 \ |
|
--lora_target_modules '[q_proj,k_proj,v_proj,o_proj]' \ |
|
--train_on_inputs \ |
|
--group_by_length \ |
|
& |
|
|
|
``` |
|
|
|
Instructions for running it can be found at https://github.com/tloen/alpaca-lora. |