polish-roberta-base-v2-cposes-tagging
This model is a fine-tuned version of sdadas/polish-roberta-base-v2 on the nkjp1m dataset. It achieves the following results on the evaluation set:
- Loss: 0.0458
- Precision: 0.9913
- Recall: 0.9912
- F1: 0.9913
- Accuracy: 0.9889
You can find the training notebook here: https://github.com/WikKam/roberta-pos-finetuning
Usage
from transformers import pipeline
nlp = pipeline("token-classification", "wkaminski/polish-roberta-base-v2-cposes-tagging")
nlp("Ale dzisiaj leje")
Model description
This model is a coarse-part-of-speech tagger for the Polish language based on sdadas/polish-roberta-base-v2. It support 13 classes representing coarse part of speech):
{
0: 'A',
1: 'Adv',
2: 'Comp',
3: 'Conj',
4: 'Dig',
5: 'Interj',
6: 'N',
7: 'Num',
8: 'Part',
9: 'Prep',
10: 'Punct',
11: 'V',
12: 'X'
}
Tags meaning is the same as in nkjp1m dataset:
Tag | Description in English | Description in Polish | Example in Polish |
---|---|---|---|
A | Adjective | przymiotnik | szybki |
Adv | Adverb | przysłówek | szybko |
Comp | Comparative / Complementizer | stopień porównawczy / spójnik podrzędny | lepszy / że |
Conj | Conjunction | spójnik | i |
Dig | Digit | cyfra | 5, 3 |
Interj | Interjection | wykrzyknik | och! |
N | Noun | rzeczownik | dom |
Num | Numeral | liczebnik | jeden |
Part | Particle | partykuła | by |
Prep | Preposition | przyimek | w |
Punct | Punctuation | interpunkcja | ., !, ? |
V | Verb | czasownik | biegać |
X | Unknown / Other | niesklasyfikowane | xxx |
Intended uses & limitations
Even though we have some nice tools for pos-tagging in polish (http://morfeusz.sgjp.pl/), I needed a pos tagger for polish that could be easily loaded inside the browser. Huggingface supports such functionality and that's why I created this model.
Training and evaluation data
Model was trained on a half of test data of the nkjp1m dataset (~0.5 milion tokens).
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0471 | 1.0 | 2155 | 0.0491 | 0.9896 | 0.9900 | 0.9898 | 0.9873 |
0.0291 | 2.0 | 4310 | 0.0467 | 0.9901 | 0.9905 | 0.9903 | 0.9884 |
0.0191 | 3.0 | 6465 | 0.0458 | 0.9913 | 0.9912 | 0.9913 | 0.9889 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 12
Model tree for wkaminski/polish-roberta-base-v2-cposes-tagging
Base model
sdadas/polish-roberta-base-v2Evaluation results
- Precision on nkjp1mtest set self-reported0.991
- Recall on nkjp1mtest set self-reported0.991
- F1 on nkjp1mtest set self-reported0.991
- Accuracy on nkjp1mtest set self-reported0.989