Edit model card

LacDa2 Model Card Readme

Model Information

Model Name: LacDa

Description: LacDa is a specialized language model that has been fine-tuned from the LLama2 model. It is designed to provide advanced natural language processing capabilities in specific domains or applications.

Fine-tuned from: LLama2

GitHub

Open LLM Leaderboard Evaluation Results

Metric Value
Avg. 43.91
ARC (25-shot) 53.07
HellaSwag (10-shot) 77.57
MMLU (5-shot) 46.03
TruthfulQA (0-shot) 44.57
Winogrande (5-shot) 74.19
GSM8K (5-shot) 6.29
DROP (3-shot) 5.65

Instruction format

from transformers import  AutoModelForCausalLM, LlamaTokenizer, BitsAndBytesConfig, TextStreamer, StoppingCriteria, StoppingCriteriaList
import torch

class StopTokenCriteria(StoppingCriteria):
    def __init__(self, stop_tokens, tokenizer, prompt_length):
        self.stop_tokens = stop_tokens
        if tokenizer.pad_token not in stop_tokens:
            self.stop_tokens.append(tokenizer.pad_token)
        if tokenizer.bos_token not in stop_tokens:
            self.stop_tokens.append(tokenizer.bos_token)
        if tokenizer.eos_token not in stop_tokens:
            self.stop_tokens.append(tokenizer.eos_token)
        self.tokenizer = tokenizer
        self.prompt_length = prompt_length

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        is_done = False
        tokens = tokenizer.decode(input_ids[0])[self.prompt_length:]
        for st in self.stop_tokens:
            if st in tokens:
                is_done = True
                break
        return is_done

model_name = "willnguyen/lacda-2-7B-chat-v0.1"
tokenizer = LlamaTokenizer.from_pretrained(
        model_name,
        use_fast=False,
        padding_side="right",
        tokenizer_type='llama',
)
tokenizer.pad_token_id = 0

model = AutoModelForCausalLM.from_pretrained(
    model_name,
     device_map="auto",
    torch_dtype=torch.float16,
)

prompt = "<s> [INST] who is Hồ Chí Minh [/INST]"

stopping_criteria = StoppingCriteriaList([StopTokenCriteria(["[INST]", "[/INST]"], tokenizer, len(prompt))])
with torch.inference_mode():
    input_ids = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to('cuda')
    streamer = TextStreamer(tokenizer)
    _ = model.generate(
        input_ids=input_ids,
        max_new_tokens=1024,
        do_sample=False,
        temperature=1.0,
        top_p=1.0,
        top_k=50,
        repetition_penalty=1.0,
        use_cache=True,
        streamer=streamer,
        stopping_criteria=stopping_criteria
    )
Downloads last month
11
Safetensors
Model size
6.74B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train willnguyen/lacda-2-7B-chat-v0.1