metadata
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: facebook/esm2_t30_150M_UR50D
metrics:
- accuracy
model-index:
- name: esm2_t130_150M-lora-classifier_2024-04-25_21-48-08
results: []
esm2_t130_150M-lora-classifier_2024-04-25_21-48-08
This model is a fine-tuned version of facebook/esm2_t30_150M_UR50D on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5189
- Accuracy: 0.8809
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005701568055793089
- train_batch_size: 12
- eval_batch_size: 12
- seed: 8893
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6192 | 1.0 | 128 | 0.6737 | 0.6055 |
0.4321 | 2.0 | 256 | 0.6507 | 0.6289 |
0.571 | 3.0 | 384 | 0.5572 | 0.7188 |
0.3053 | 4.0 | 512 | 0.5090 | 0.7852 |
0.5055 | 5.0 | 640 | 0.3370 | 0.8516 |
0.2786 | 6.0 | 768 | 0.3710 | 0.8594 |
0.1327 | 7.0 | 896 | 0.3055 | 0.8711 |
0.2127 | 8.0 | 1024 | 0.2891 | 0.8945 |
0.0913 | 9.0 | 1152 | 0.3454 | 0.8691 |
0.0134 | 10.0 | 1280 | 0.3354 | 0.8809 |
0.2597 | 11.0 | 1408 | 0.3436 | 0.8848 |
0.0276 | 12.0 | 1536 | 0.4181 | 0.8633 |
0.0929 | 13.0 | 1664 | 0.3722 | 0.8789 |
0.9377 | 14.0 | 1792 | 0.5086 | 0.8730 |
0.2894 | 15.0 | 1920 | 0.3311 | 0.8906 |
0.3138 | 16.0 | 2048 | 0.4739 | 0.8809 |
0.0088 | 17.0 | 2176 | 0.3875 | 0.8867 |
0.3591 | 18.0 | 2304 | 0.4032 | 0.8809 |
0.0436 | 19.0 | 2432 | 0.4316 | 0.8887 |
0.0037 | 20.0 | 2560 | 0.4931 | 0.8789 |
0.0322 | 21.0 | 2688 | 0.4787 | 0.8809 |
0.0035 | 22.0 | 2816 | 0.4460 | 0.8770 |
0.0859 | 23.0 | 2944 | 0.4914 | 0.8828 |
0.039 | 24.0 | 3072 | 0.4955 | 0.8770 |
0.4208 | 25.0 | 3200 | 0.5211 | 0.8828 |
0.1874 | 26.0 | 3328 | 0.5376 | 0.8711 |
0.4433 | 27.0 | 3456 | 0.5319 | 0.875 |
0.2976 | 28.0 | 3584 | 0.5201 | 0.8809 |
0.0223 | 29.0 | 3712 | 0.5179 | 0.8809 |
0.0021 | 30.0 | 3840 | 0.5189 | 0.8809 |
Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.16.1
- Tokenizers 0.15.2