esm2_t12_35M-lora-binding-sites_2024-04-25_14-47-08
This model is a fine-tuned version of facebook/esm2_t12_35M_UR50D on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4214
- Accuracy: 0.8574
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005701568055793089
- train_batch_size: 64
- eval_batch_size: 64
- seed: 8893
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6683 | 1.0 | 24 | 0.6799 | 0.5820 |
0.6546 | 2.0 | 48 | 0.6737 | 0.5820 |
0.665 | 3.0 | 72 | 0.6597 | 0.5820 |
0.6569 | 4.0 | 96 | 0.6247 | 0.6426 |
0.6524 | 5.0 | 120 | 0.6101 | 0.6582 |
0.6161 | 6.0 | 144 | 0.5936 | 0.6699 |
0.4919 | 7.0 | 168 | 0.5802 | 0.6680 |
0.461 | 8.0 | 192 | 0.6265 | 0.6465 |
0.6359 | 9.0 | 216 | 0.5477 | 0.7051 |
0.4399 | 10.0 | 240 | 0.5543 | 0.7109 |
0.7217 | 11.0 | 264 | 0.6668 | 0.6719 |
0.4323 | 12.0 | 288 | 0.4740 | 0.7656 |
0.4103 | 13.0 | 312 | 0.4999 | 0.7637 |
0.2916 | 14.0 | 336 | 0.3996 | 0.8320 |
0.262 | 15.0 | 360 | 0.4088 | 0.8418 |
0.4494 | 16.0 | 384 | 0.4432 | 0.8164 |
0.3895 | 17.0 | 408 | 0.3702 | 0.8379 |
0.3254 | 18.0 | 432 | 0.3501 | 0.8438 |
0.2065 | 19.0 | 456 | 0.3646 | 0.8438 |
0.167 | 20.0 | 480 | 0.3768 | 0.8320 |
0.3051 | 21.0 | 504 | 0.3557 | 0.8457 |
0.2773 | 22.0 | 528 | 0.3551 | 0.8730 |
0.2969 | 23.0 | 552 | 0.3434 | 0.8555 |
0.1427 | 24.0 | 576 | 0.3390 | 0.8594 |
0.327 | 25.0 | 600 | 0.4370 | 0.8652 |
0.1195 | 26.0 | 624 | 0.3594 | 0.8496 |
0.3383 | 27.0 | 648 | 0.4215 | 0.8672 |
0.1738 | 28.0 | 672 | 0.3671 | 0.8711 |
0.2686 | 29.0 | 696 | 0.3913 | 0.8457 |
0.1049 | 30.0 | 720 | 0.3803 | 0.8652 |
0.1809 | 31.0 | 744 | 0.4294 | 0.8691 |
0.1036 | 32.0 | 768 | 0.4279 | 0.8613 |
0.1664 | 33.0 | 792 | 0.4326 | 0.8594 |
0.246 | 34.0 | 816 | 0.4770 | 0.8535 |
0.0664 | 35.0 | 840 | 0.5014 | 0.8516 |
0.1116 | 36.0 | 864 | 0.5981 | 0.8555 |
0.0323 | 37.0 | 888 | 0.5228 | 0.8633 |
0.0751 | 38.0 | 912 | 0.5393 | 0.8594 |
0.0659 | 39.0 | 936 | 0.5420 | 0.8555 |
0.0699 | 40.0 | 960 | 0.5920 | 0.8535 |
0.0427 | 41.0 | 984 | 0.6336 | 0.8555 |
0.0265 | 42.0 | 1008 | 0.6485 | 0.8594 |
0.0386 | 43.0 | 1032 | 0.6955 | 0.8516 |
0.0759 | 44.0 | 1056 | 0.8761 | 0.8555 |
0.164 | 45.0 | 1080 | 0.8223 | 0.8496 |
0.0632 | 46.0 | 1104 | 0.8234 | 0.8594 |
0.0709 | 47.0 | 1128 | 0.8806 | 0.8535 |
0.0042 | 48.0 | 1152 | 0.9198 | 0.8594 |
0.0198 | 49.0 | 1176 | 0.8870 | 0.8652 |
0.002 | 50.0 | 1200 | 0.9676 | 0.8496 |
0.0156 | 51.0 | 1224 | 0.9507 | 0.8613 |
0.0551 | 52.0 | 1248 | 0.9955 | 0.8555 |
0.018 | 53.0 | 1272 | 1.0277 | 0.8535 |
0.0041 | 54.0 | 1296 | 1.0293 | 0.8633 |
0.0021 | 55.0 | 1320 | 1.0939 | 0.8652 |
0.0851 | 56.0 | 1344 | 1.1512 | 0.8574 |
0.0257 | 57.0 | 1368 | 1.0998 | 0.8516 |
0.0364 | 58.0 | 1392 | 1.1812 | 0.8496 |
0.0019 | 59.0 | 1416 | 1.1941 | 0.8438 |
0.0015 | 60.0 | 1440 | 1.2219 | 0.8574 |
0.0868 | 61.0 | 1464 | 1.2075 | 0.8555 |
0.0002 | 62.0 | 1488 | 1.2761 | 0.8574 |
0.0005 | 63.0 | 1512 | 1.2235 | 0.8535 |
0.0149 | 64.0 | 1536 | 1.2502 | 0.8613 |
0.002 | 65.0 | 1560 | 1.2890 | 0.8477 |
0.0001 | 66.0 | 1584 | 1.2766 | 0.8496 |
0.0488 | 67.0 | 1608 | 1.2966 | 0.8496 |
0.0002 | 68.0 | 1632 | 1.3242 | 0.8535 |
0.0008 | 69.0 | 1656 | 1.3247 | 0.8535 |
0.0024 | 70.0 | 1680 | 1.3615 | 0.8613 |
0.0001 | 71.0 | 1704 | 1.3805 | 0.8574 |
0.0017 | 72.0 | 1728 | 1.3145 | 0.8555 |
0.0004 | 73.0 | 1752 | 1.3214 | 0.8613 |
0.0121 | 74.0 | 1776 | 1.3500 | 0.8613 |
0.0229 | 75.0 | 1800 | 1.3902 | 0.8516 |
0.0022 | 76.0 | 1824 | 1.3923 | 0.8555 |
0.0007 | 77.0 | 1848 | 1.3887 | 0.8496 |
0.0036 | 78.0 | 1872 | 1.3787 | 0.8535 |
0.0001 | 79.0 | 1896 | 1.3920 | 0.8535 |
0.0 | 80.0 | 1920 | 1.3965 | 0.8574 |
0.0008 | 81.0 | 1944 | 1.3935 | 0.8633 |
0.0 | 82.0 | 1968 | 1.3969 | 0.8594 |
0.0 | 83.0 | 1992 | 1.3986 | 0.8574 |
0.0001 | 84.0 | 2016 | 1.3891 | 0.8594 |
0.0017 | 85.0 | 2040 | 1.4158 | 0.8633 |
0.0002 | 86.0 | 2064 | 1.4081 | 0.8574 |
0.0054 | 87.0 | 2088 | 1.4131 | 0.8613 |
0.0002 | 88.0 | 2112 | 1.4065 | 0.8633 |
0.0108 | 89.0 | 2136 | 1.4221 | 0.8613 |
0.0002 | 90.0 | 2160 | 1.4166 | 0.8613 |
0.0 | 91.0 | 2184 | 1.4192 | 0.8555 |
0.0 | 92.0 | 2208 | 1.4152 | 0.8613 |
0.0001 | 93.0 | 2232 | 1.4160 | 0.8613 |
0.0412 | 94.0 | 2256 | 1.4141 | 0.8613 |
0.0001 | 95.0 | 2280 | 1.4159 | 0.8613 |
0.0073 | 96.0 | 2304 | 1.4179 | 0.8613 |
0.0 | 97.0 | 2328 | 1.4222 | 0.8633 |
0.0209 | 98.0 | 2352 | 1.4202 | 0.8594 |
0.0001 | 99.0 | 2376 | 1.4203 | 0.8594 |
0.0001 | 100.0 | 2400 | 1.4214 | 0.8574 |
Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.16.1
- Tokenizers 0.15.2
- Downloads last month
- 0
Model tree for wcvz/esm2_t12_35M-lora-binding-sites_2024-04-25_14-47-08
Base model
facebook/esm2_t12_35M_UR50D