w05230505's picture
End of training
39df100 verified
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-qnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QNLI
type: glue
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.9110378912685337
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-qnli
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4019
- Accuracy: 0.9110
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 0.3365 | 1.0 | 6547 | 0.9065 | 0.2398 |
| 0.1938 | 2.0 | 13094 | 0.9109 | 0.2898 |
| 0.1171 | 3.0 | 19641 | 0.9132 | 0.3919 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1