BERT-base tuned for Squadv1.1 is pruned with movement pruning algorithm in hybrid fashion, i.e. 32x32 block for self-attention layers, per-dimension grain size for ffn layers.
eval_exact_match = 78.5241
eval_f1 = 86.4138
eval_samples = 10784
This model is a replication of block pruning paper with its open-sourced codebase (forked and modified). To reproduce this model, pls follow documentation here until step 2.
Eval
The model can be evaluated out-of-the-box with HF QA example. Note that only pruned self-attention heads are discarded where pruned ffn dimension are sparsified instead of removal. Verified in v4.13.0, v4.9.1.
export CUDA_VISIBLE_DEVICES=0
OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid
WORKDIR=transformers/examples/pytorch/question-answering
cd $WORKDIR
mkdir $OUTDIR
nohup python run_qa.py \
--model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \
--dataset_name squad \
--do_eval \
--per_device_eval_batch_size 16 \
--max_seq_length 384 \
--doc_stride 128 \
--overwrite_output_dir \
--output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
If the intent is to observe inference acceleration, the pruned structure in the model must be "cropped"/discarded. Follow the custom setup below.
# OpenVINO/NNCF
git clone https://github.com/vuiseng9/nncf && cd nncf
git checkout tld-poc
git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2
python setup.py develop
pip install -r examples/torch/requirements.txt
# Huggingface nn_pruning
git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning
git checkout reproduce-evaluation
git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446
pip install -e ".[dev]"
# Huggingface Transformers
git clone https://github.com/vuiseng9/transformers && cd transformers
git checkout tld-poc
git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5
pip install -e .
head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {}
Add --optimize_model_before_eval
during evaluation.
export CUDA_VISIBLE_DEVICES=0
OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-cropped
WORKDIR=transformers/examples/pytorch/question-answering
cd $WORKDIR
mkdir $OUTDIR
nohup python run_qa.py \
--model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \
--dataset_name squad \
--optimize_model_before_eval \
--do_eval \
--per_device_eval_batch_size 128 \
--max_seq_length 384 \
--doc_stride 128 \
--overwrite_output_dir \
--output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
- Downloads last month
- 12