metadata
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
model-index:
- name: cls-comment-phobert-base-v2-v2.4
results: []
cls-comment-phobert-base-v2-v2.4
This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6177
- Accuracy: 0.9241
- F1 Score: 0.8919
- Recall: 0.8930
- Precision: 0.8911
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4000
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision |
---|---|---|---|---|---|---|---|
1.7008 | 0.96 | 100 | 1.5259 | 0.4623 | 0.1091 | 0.1687 | 0.2296 |
1.4089 | 1.91 | 200 | 1.1875 | 0.6568 | 0.2499 | 0.2948 | 0.2170 |
1.0776 | 2.87 | 300 | 0.9009 | 0.8038 | 0.5304 | 0.5309 | 0.5333 |
0.8625 | 3.83 | 400 | 0.7617 | 0.8575 | 0.6321 | 0.6372 | 0.7107 |
0.7245 | 4.78 | 500 | 0.6894 | 0.8818 | 0.7282 | 0.7214 | 0.8803 |
0.6573 | 5.74 | 600 | 0.6651 | 0.8968 | 0.8406 | 0.8213 | 0.8770 |
0.6082 | 6.7 | 700 | 0.6335 | 0.9079 | 0.8630 | 0.8667 | 0.8595 |
0.5674 | 7.66 | 800 | 0.6363 | 0.9106 | 0.8692 | 0.8795 | 0.8621 |
0.5477 | 8.61 | 900 | 0.6269 | 0.9151 | 0.8776 | 0.8693 | 0.8877 |
0.5256 | 9.57 | 1000 | 0.6178 | 0.9205 | 0.8835 | 0.8849 | 0.8826 |
0.5148 | 10.53 | 1100 | 0.6214 | 0.9199 | 0.8796 | 0.8839 | 0.8762 |
0.4999 | 11.48 | 1200 | 0.6158 | 0.9229 | 0.8856 | 0.8853 | 0.8862 |
0.4916 | 12.44 | 1300 | 0.6186 | 0.9232 | 0.8839 | 0.8795 | 0.8888 |
0.479 | 13.4 | 1400 | 0.6285 | 0.9202 | 0.8847 | 0.8833 | 0.8864 |
0.4812 | 14.35 | 1500 | 0.6177 | 0.9241 | 0.8919 | 0.8930 | 0.8911 |
0.4667 | 15.31 | 1600 | 0.6206 | 0.9256 | 0.8848 | 0.8853 | 0.8843 |
0.4668 | 16.27 | 1700 | 0.6201 | 0.9265 | 0.8854 | 0.8876 | 0.8837 |
0.4635 | 17.22 | 1800 | 0.6252 | 0.9253 | 0.8901 | 0.8877 | 0.8927 |
0.4593 | 18.18 | 1900 | 0.6264 | 0.9274 | 0.8891 | 0.8899 | 0.8887 |
0.4538 | 19.14 | 2000 | 0.6228 | 0.9265 | 0.8891 | 0.8913 | 0.8870 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2