tiennguyenbnbk's picture
End of training
c721c7b verified
metadata
base_model: vinai/phobert-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
model-index:
  - name: cls-comment-phobert-base-v2-v2.4
    results: []

cls-comment-phobert-base-v2-v2.4

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6177
  • Accuracy: 0.9241
  • F1 Score: 0.8919
  • Recall: 0.8930
  • Precision: 0.8911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 4000
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score Recall Precision
1.7008 0.96 100 1.5259 0.4623 0.1091 0.1687 0.2296
1.4089 1.91 200 1.1875 0.6568 0.2499 0.2948 0.2170
1.0776 2.87 300 0.9009 0.8038 0.5304 0.5309 0.5333
0.8625 3.83 400 0.7617 0.8575 0.6321 0.6372 0.7107
0.7245 4.78 500 0.6894 0.8818 0.7282 0.7214 0.8803
0.6573 5.74 600 0.6651 0.8968 0.8406 0.8213 0.8770
0.6082 6.7 700 0.6335 0.9079 0.8630 0.8667 0.8595
0.5674 7.66 800 0.6363 0.9106 0.8692 0.8795 0.8621
0.5477 8.61 900 0.6269 0.9151 0.8776 0.8693 0.8877
0.5256 9.57 1000 0.6178 0.9205 0.8835 0.8849 0.8826
0.5148 10.53 1100 0.6214 0.9199 0.8796 0.8839 0.8762
0.4999 11.48 1200 0.6158 0.9229 0.8856 0.8853 0.8862
0.4916 12.44 1300 0.6186 0.9232 0.8839 0.8795 0.8888
0.479 13.4 1400 0.6285 0.9202 0.8847 0.8833 0.8864
0.4812 14.35 1500 0.6177 0.9241 0.8919 0.8930 0.8911
0.4667 15.31 1600 0.6206 0.9256 0.8848 0.8853 0.8843
0.4668 16.27 1700 0.6201 0.9265 0.8854 0.8876 0.8837
0.4635 17.22 1800 0.6252 0.9253 0.8901 0.8877 0.8927
0.4593 18.18 1900 0.6264 0.9274 0.8891 0.8899 0.8887
0.4538 19.14 2000 0.6228 0.9265 0.8891 0.8913 0.8870

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2