|
|
|
--- |
|
language: fr |
|
pipeline_tag: "token-classification" |
|
widget: |
|
- text: "je voudrais réserver une chambre à paris pour demain et lundi" |
|
- text: "d'accord pour l'hôtel à quatre vingt dix euros la nuit" |
|
- text: "deux nuits s'il vous plait" |
|
- text: "dans un hôtel avec piscine à marseille" |
|
tags: |
|
- bert |
|
- flaubert |
|
- natural language understanding |
|
- NLU |
|
- spoken language understanding |
|
- SLU |
|
- understanding |
|
- MEDIA |
|
--- |
|
|
|
# vpelloin/MEDIA_NLU-flaubert_oral_ft |
|
This is a Natural Language Understanding (NLU) model for the French [MEDIA benchmark](https://catalogue.elra.info/en-us/repository/browse/ELRA-S0272/). |
|
It maps each input words into outputs concepts tags (76 available). |
|
|
|
This model is trained using [`nherve/flaubert-oral-ft`](https://huggingface.co./nherve/flaubert-oral-ft) as its inital checkpoint. It obtained 11.98% CER (*lower is better*) in the MEDIA test set, in [our Interspeech 2023 publication](http://doi.org/10.21437/Interspeech.2022-352), using Kaldi ASR transcriptions. |
|
|
|
## Available MEDIA NLU models: |
|
- [`vpelloin/MEDIA_NLU-flaubert_base_cased`](https://huggingface.co./vpelloin/MEDIA_NLU-flaubert_base_cased): MEDIA NLU model trained using [`flaubert/flaubert_base_cased`](https://huggingface.co./flaubert/flaubert_base_cased). Obtains 13.20% CER on MEDIA test. |
|
- [`vpelloin/MEDIA_NLU-flaubert_base_uncased`](https://huggingface.co./vpelloin/MEDIA_NLU-flaubert_base_uncased): MEDIA NLU model trained using [`flaubert/flaubert_base_uncased`](https://huggingface.co./flaubert/flaubert_base_uncased). Obtains 12.40% CER on MEDIA test. |
|
- [`vpelloin/MEDIA_NLU-flaubert_oral_ft`](https://huggingface.co./vpelloin/MEDIA_NLU-flaubert_oral_ft): MEDIA NLU model trained using [`nherve/flaubert-oral-ft`](https://huggingface.co./nherve/flaubert-oral-ft). Obtains 11.98% CER on MEDIA test. |
|
- [`vpelloin/MEDIA_NLU-flaubert_oral_mixed`](https://huggingface.co./vpelloin/MEDIA_NLU-flaubert_oral_mixed): MEDIA NLU model trained using [`nherve/flaubert-oral-mixed`](https://huggingface.co./nherve/flaubert-oral-mixed). Obtains 12.47% CER on MEDIA test. |
|
- [`vpelloin/MEDIA_NLU-flaubert_oral_asr`](https://huggingface.co./vpelloin/MEDIA_NLU-flaubert_oral_asr): MEDIA NLU model trained using [`nherve/flaubert-oral-asr`](https://huggingface.co./nherve/flaubert-oral-asr). Obtains 12.43% CER on MEDIA test. |
|
- [`vpelloin/MEDIA_NLU-flaubert_oral_asr_nb`](https://huggingface.co./vpelloin/MEDIA_NLU-flaubert_oral_asr_nb): MEDIA NLU model trained using [`nherve/flaubert-oral-asr_nb`](https://huggingface.co./nherve/flaubert-oral-asr_nb). Obtains 12.24% CER on MEDIA test. |
|
|
|
## Usage with Pipeline |
|
```python |
|
from transformers import pipeline |
|
|
|
generator = pipeline( |
|
model="vpelloin/MEDIA_NLU-flaubert_oral_ft", |
|
task="token-classification" |
|
) |
|
|
|
sentences = [ |
|
"je voudrais réserver une chambre à paris pour demain et lundi", |
|
"d'accord pour l'hôtel à quatre vingt dix euros la nuit", |
|
"deux nuits s'il vous plait", |
|
"dans un hôtel avec piscine à marseille" |
|
] |
|
|
|
for sentence in sentences: |
|
print([(tok['word'], tok['entity']) for tok in generator(sentence)]) |
|
``` |
|
## Usage with AutoTokenizer/AutoModel |
|
```python |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForTokenClassification |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"vpelloin/MEDIA_NLU-flaubert_oral_ft" |
|
) |
|
model = AutoModelForTokenClassification.from_pretrained( |
|
"vpelloin/MEDIA_NLU-flaubert_oral_ft" |
|
) |
|
|
|
sentences = [ |
|
"je voudrais réserver une chambre à paris pour demain et lundi", |
|
"d'accord pour l'hôtel à quatre vingt dix euros la nuit", |
|
"deux nuits s'il vous plait", |
|
"dans un hôtel avec piscine à marseille" |
|
] |
|
inputs = tokenizer(sentences, padding=True, return_tensors='pt') |
|
outputs = model(**inputs).logits |
|
print([ |
|
[model.config.id2label[i] for i in b] |
|
for b in outputs.argmax(dim=-1).tolist() |
|
]) |
|
``` |
|
|
|
## Reference |
|
|
|
If you use this model for your scientific publication, or if you find the resources in this repository useful, please cite the [following paper](http://doi.org/10.21437/Interspeech.2022-352): |
|
``` |
|
@inproceedings{pelloin22_interspeech, |
|
author={Valentin Pelloin and Franck Dary and Nicolas Hervé and Benoit Favre and Nathalie Camelin and Antoine LAURENT and Laurent Besacier}, |
|
title={ASR-Generated Text for Language Model Pre-training Applied to Speech Tasks}, |
|
year=2022, |
|
booktitle={Proc. Interspeech 2022}, |
|
pages={3453--3457}, |
|
doi={10.21437/Interspeech.2022-352} |
|
} |
|
``` |
|
|
|
|