File size: 5,511 Bytes
1ebbc47 9e12e68 1ebbc47 9e12e68 1ebbc47 9e12e68 1ebbc47 9e12e68 1ebbc47 9e12e68 1ebbc47 9e12e68 1ebbc47 9e12e68 1ebbc47 9e12e68 1ebbc47 9e12e68 1ebbc47 9e12e68 1ebbc47 9e12e68 1ebbc47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: it
datasets:
- lmqg/qg_itquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento."
example_title: "Question Generation Example 1"
- text: "L' individuazione del petrolio e lo sviluppo di nuovi giacimenti richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una produzione significativa."
example_title: "Question Generation Example 2"
- text: "il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo."
example_title: "Question Generation Example 3"
model-index:
- name: vocabtrimmer/mt5-small-trimmed-it-60000-itquad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_itquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 7.43
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 21.95
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 17.36
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 80.89
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 56.76
---
# Model Card of `vocabtrimmer/mt5-small-trimmed-it-60000-itquad-qg`
This model is fine-tuned version of [ckpts/mt5-small-trimmed-it-60000](https://huggingface.co./ckpts/mt5-small-trimmed-it-60000) for question generation task on the [lmqg/qg_itquad](https://huggingface.co./datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [ckpts/mt5-small-trimmed-it-60000](https://huggingface.co./ckpts/mt5-small-trimmed-it-60000)
- **Language:** it
- **Training data:** [lmqg/qg_itquad](https://huggingface.co./datasets/lmqg/qg_itquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="it", model="vocabtrimmer/mt5-small-trimmed-it-60000-itquad-qg")
# model prediction
questions = model.generate_q(list_context="Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.", list_answer="Dopo il 1971")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-it-60000-itquad-qg")
output = pipe("<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co./vocabtrimmer/mt5-small-trimmed-it-60000-itquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore | 80.89 | default | [lmqg/qg_itquad](https://huggingface.co./datasets/lmqg/qg_itquad) |
| Bleu_1 | 22.98 | default | [lmqg/qg_itquad](https://huggingface.co./datasets/lmqg/qg_itquad) |
| Bleu_2 | 15.09 | default | [lmqg/qg_itquad](https://huggingface.co./datasets/lmqg/qg_itquad) |
| Bleu_3 | 10.44 | default | [lmqg/qg_itquad](https://huggingface.co./datasets/lmqg/qg_itquad) |
| Bleu_4 | 7.43 | default | [lmqg/qg_itquad](https://huggingface.co./datasets/lmqg/qg_itquad) |
| METEOR | 17.36 | default | [lmqg/qg_itquad](https://huggingface.co./datasets/lmqg/qg_itquad) |
| MoverScore | 56.76 | default | [lmqg/qg_itquad](https://huggingface.co./datasets/lmqg/qg_itquad) |
| ROUGE_L | 21.95 | default | [lmqg/qg_itquad](https://huggingface.co./datasets/lmqg/qg_itquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_itquad
- dataset_name: default
- input_types: paragraph_answer
- output_types: question
- prefix_types: None
- model: ckpts/mt5-small-trimmed-it-60000
- max_length: 512
- max_length_output: 32
- epoch: 16
- batch: 16
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co./vocabtrimmer/mt5-small-trimmed-it-60000-itquad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|