asahi417 commited on
Commit
9e12e68
·
1 Parent(s): e701b87

commit files to HF hub

Browse files
README.md CHANGED
@@ -33,27 +33,27 @@ model-index:
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
- value: 0.0
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
- value: 0.0
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
- value: 0.0
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
- value: 66.35
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
- value: 44.62
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-it-60000-itquad-qg`
52
- This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-it-60000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-60000) for question generation task on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
- - **Language model:** [vocabtrimmer/mt5-small-trimmed-it-60000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-60000)
57
  - **Language:** it
58
  - **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
@@ -89,14 +89,14 @@ output = pipe("<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
- | BERTScore | 66.35 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
93
- | Bleu_1 | 0 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
94
- | Bleu_2 | 0 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
95
- | Bleu_3 | 0 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
96
- | Bleu_4 | 0 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
97
- | METEOR | 0 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
98
- | MoverScore | 44.62 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
99
- | ROUGE_L | 0 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
100
 
101
 
102
 
@@ -108,12 +108,12 @@ The following hyperparameters were used during fine-tuning:
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
- - model: vocabtrimmer/mt5-small-trimmed-it-60000
112
  - max_length: 512
113
  - max_length_output: 32
114
- - epoch: 2
115
  - batch: 16
116
- - lr: 0.0001
117
  - fp16: False
118
  - random_seed: 1
119
  - gradient_accumulation_steps: 4
 
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
+ value: 7.43
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
+ value: 21.95
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
+ value: 17.36
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
+ value: 80.89
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
+ value: 56.76
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-it-60000-itquad-qg`
52
+ This model is fine-tuned version of [ckpts/mt5-small-trimmed-it-60000](https://huggingface.co/ckpts/mt5-small-trimmed-it-60000) for question generation task on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
+ - **Language model:** [ckpts/mt5-small-trimmed-it-60000](https://huggingface.co/ckpts/mt5-small-trimmed-it-60000)
57
  - **Language:** it
58
  - **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
 
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
+ | BERTScore | 80.89 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
93
+ | Bleu_1 | 22.98 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
94
+ | Bleu_2 | 15.09 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
95
+ | Bleu_3 | 10.44 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
96
+ | Bleu_4 | 7.43 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
97
+ | METEOR | 17.36 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
98
+ | MoverScore | 56.76 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
99
+ | ROUGE_L | 21.95 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
100
 
101
 
102
 
 
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
+ - model: ckpts/mt5-small-trimmed-it-60000
112
  - max_length: 512
113
  - max_length_output: 32
114
+ - epoch: 16
115
  - batch: 16
116
+ - lr: 0.001
117
  - fp16: False
118
  - random_seed: 1
119
  - gradient_accumulation_steps: 4
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_itquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 7.133365089648553e-24, "Bleu_2": 1.9676970932905754e-17, "Bleu_3": 2.7596002445433297e-15, "Bleu_4": 3.268060893452373e-14}, "test": {"Bleu_1": 5.88715949656117e-24, "Bleu_2": 1.6239385596471902e-17, "Bleu_3": 2.2774954852585863e-15, "Bleu_4": 2.6971275803824327e-14}}
 
1
+ {"validation": {"Bleu_1": 0.22855511788548005, "Bleu_2": 0.15082459563081593, "Bleu_3": 0.10482215364835964, "Bleu_4": 0.07496821877868082}, "test": {"Bleu_1": 0.21950758207892238, "Bleu_2": 0.14289246014919327, "Bleu_3": 0.09841840295461632, "Bleu_4": 0.06977208868636313}}
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 7.451023020724259e-24, "Bleu_2": 2.0424503147740266e-17, "Bleu_3": 2.858446264233082e-15, "Bleu_4": 3.381577134650532e-14, "METEOR": 1.677749522715214e-05, "ROUGE_L": 0.0, "BERTScore": 0.664024772758588, "MoverScore": 0.44676755775153704}, "test": {"Bleu_1": 7.45915214015228e-24, "Bleu_2": 1.959784876808115e-17, "Bleu_3": 2.7042575293099312e-15, "Bleu_4": 3.176639050182598e-14, "METEOR": 1.0780097245460567e-05, "ROUGE_L": 0.0, "BERTScore": 0.6634886529537866, "MoverScore": 0.44622348610997636}}
 
1
+ {"validation": {"Bleu_1": 0.22960316359095057, "Bleu_2": 0.15173753909591411, "Bleu_3": 0.10555530830607611, "Bleu_4": 0.07553649367774772, "METEOR": 0.18104800597877385, "ROUGE_L": 0.2209215723306332, "BERTScore": 0.8166145425719215, "MoverScore": 0.5738630471035456}, "test": {"Bleu_1": 0.22980253549819923, "Bleu_2": 0.150869089044216, "Bleu_3": 0.10440707535596781, "Bleu_4": 0.07425019908556166, "METEOR": 0.17358939036348323, "ROUGE_L": 0.2194557160994451, "BERTScore": 0.8088722666260058, "MoverScore": 0.5675922172496102}}
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff