|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-small-carvia_nlc2cmd_ver2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-small-carvia_nlc2cmd_ver2 |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co./google/flan-t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1225 |
|
- Rouge1: 83.9262 |
|
- Rouge2: 59.9956 |
|
- Rougel: 83.9262 |
|
- Rougelsum: 83.9381 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 0.1152 | 1.0 | 1625 | 0.1225 | 83.9262 | 59.9956 | 83.9262 | 83.9381 | 19.0 | |
|
| 0.1126 | 2.0 | 3250 | 0.1560 | 79.3619 | 51.4444 | 79.3857 | 79.3357 | 19.0 | |
|
| 0.1083 | 3.0 | 4875 | 0.1682 | 80.4274 | 53.4222 | 80.4655 | 80.4167 | 19.0 | |
|
| 0.1066 | 4.0 | 6500 | 0.1785 | 79.3393 | 51.3667 | 79.3524 | 79.2964 | 19.0 | |
|
| 0.1079 | 5.0 | 8125 | 0.1793 | 79.3119 | 51.3222 | 79.3357 | 79.2833 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.3 |
|
- Tokenizers 0.13.3 |
|
|