metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:26
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Answer: Users can contact Customer Care before confirmation to request a
refund for offline
sentences:
- single order?
- a booking?
- MOU?
- source_sentence: >-
The Employee agrees to be employed on the terms and conditions set out in
this Agreement.
sentences:
- What events constitute Force Majeure under this Agreement?
- What are the specific terms and conditions of employment?
- What is the scope of this Agreement?
- source_sentence: >-
The term of this Agreement shall continue until terminated by either party
in accordance with
sentences:
- When does this Agreement terminate?
- What is the term of the Agreement?
- Can the Company make changes to the job title or duties of the Employee?
- source_sentence: >-
The initial job title of the Employee will be Relationship Manager. The
initial job duties the
sentences:
- >-
What remedies are available in case of a material breach of this
Agreement?
- >-
What representations and warranties does the Employee make to the
Company?
- What are the initial job title and duties of the Employee?
- source_sentence: >-
The Company has employed the Employee to render services as described
herein from the
sentences:
- What rules and policies must the Employee abide by?
- What are the general obligations of the Employee?
- When does the Company employ the Employee?
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 1
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8769765845238192
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8333333333333334
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8333333333333334
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 1
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8333333333333334
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7777777777777777
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7777777777777777
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 1
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8333333333333334
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7777777777777777
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7777777777777777
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6666666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2222222222222222
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6666666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8102255193577976
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.75
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.75
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6666666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6666666666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6666666666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2222222222222222
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13333333333333333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06666666666666667
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6666666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6666666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6666666666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6666666666666666
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6666666666666666
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6969696969696969
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("vineet10/new_model_3")
sentences = [
'The Company has employed the Employee to render services as described herein from the',
'When does the Company employ the Employee?',
'What are the general obligations of the Employee?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6667 |
cosine_accuracy@3 |
1.0 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.6667 |
cosine_precision@3 |
0.3333 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.6667 |
cosine_recall@3 |
1.0 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.877 |
cosine_mrr@10 |
0.8333 |
cosine_map@100 |
0.8333 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6667 |
cosine_accuracy@3 |
1.0 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.6667 |
cosine_precision@3 |
0.3333 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.6667 |
cosine_recall@3 |
1.0 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8333 |
cosine_mrr@10 |
0.7778 |
cosine_map@100 |
0.7778 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6667 |
cosine_accuracy@3 |
1.0 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.6667 |
cosine_precision@3 |
0.3333 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.6667 |
cosine_recall@3 |
1.0 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8333 |
cosine_mrr@10 |
0.7778 |
cosine_map@100 |
0.7778 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6667 |
cosine_accuracy@3 |
0.6667 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.6667 |
cosine_precision@3 |
0.2222 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.6667 |
cosine_recall@3 |
0.6667 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8102 |
cosine_mrr@10 |
0.75 |
cosine_map@100 |
0.75 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6667 |
cosine_accuracy@3 |
0.6667 |
cosine_accuracy@5 |
0.6667 |
cosine_accuracy@10 |
0.6667 |
cosine_precision@1 |
0.6667 |
cosine_precision@3 |
0.2222 |
cosine_precision@5 |
0.1333 |
cosine_precision@10 |
0.0667 |
cosine_recall@1 |
0.6667 |
cosine_recall@3 |
0.6667 |
cosine_recall@5 |
0.6667 |
cosine_recall@10 |
0.6667 |
cosine_ndcg@10 |
0.6667 |
cosine_mrr@10 |
0.6667 |
cosine_map@100 |
0.697 |
Training Details
Training Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
num_train_epochs
: 1
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0 |
0 |
0.75 |
0.7778 |
0.7778 |
0.6970 |
0.8333 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}