IndexError: index out of range in self

#2
by ljhwild - opened

Thank you so much for this upload, I can't understand why unbabel didn't enable this format yet.
I am trying to use your model for evaluating translation quality for product descriptions.
I'm running generations from the same model in a loop and always get to an IndexError after 20 generations

translation_evaluator.py - it's the most simple basic wrapper around the model to run generations on the same model loaded to memory

from transformers import XLMRobertaTokenizerFast, AutoModel
import logging as log
log.basicConfig(level=log.INFO)

model_id = "vince62s/wmt23-cometkiwi-da-roberta-xl" # it's a modified unbabel model to use default Roberta Architecture


class TranslationEvaluator:
    def __init__(self):
        log.info(f"Preparing Translation Evaluation model: {model_id}")
        self.tokenizer = XLMRobertaTokenizerFast.from_pretrained(model_id, trust_remote_code=True)
        self.model = AutoModel.from_pretrained(model_id, trust_remote_code=True)
        log.info(f"Model loaded.")

    def _generate_evaluation(self, text:str, translation:str):
        input_text = f"{text}</s></s>{translation}"
        encoded_text = self.tokenizer(input_text, return_tensors='pt')    
        output = self.model(**encoded_text)
        return output
    
    def evaluate(self, text:str, translation:str) -> float:
        """
        Evaluates translation between two languages. 
        Outputs a score between 0 and 1, where 0 means very bad and 1 perfect translation.
        """
        output = self._generate_evaluation(text=text, translation=translation)
        return float(output[0][0][0])
   

My run script:

from evaluator import TranslationEvaluator
from data import preparer as prep
from data import extracted_samples_file as samples_file
from data import LanguageKeys as LK
import torch

import logging as log
log.basicConfig(level=log.INFO)

samples_file = prep.load_json(samples_file)
trans_eval = TranslationEvaluator()
log_file = './scoring/scores.json'

eval_n_samples = 21
start_at = 19

scores = {}
for i in range(len(samples_file[start_at:start_at+eval_n_samples])):
    en = samples_file[i][LK.en_ie]
    pl = samples_file[i][LK.pl_pl]

    score = trans_eval.evaluate(
        text=en,
        translation=pl
    )
    scores[i] = score
    log.info(f"Sample {i}: {score}")
    torch.clear_autocast_cache()

prep.save_json(
    data=scores,
    save_path=log_file
)

The outputs

(base) [lael.alhalawani@potatoai finetuning_v2]$ /home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/bin/python /home/lael.alhalawani/python/finetuning_v2/run.py
INFO:root:Preparing Translation Evaluation model: vince62s/wmt23-cometkiwi-da-roberta-xl
INFO:root:Model loaded.
INFO:root:Sample 0: 0.5147500038146973
INFO:root:Sample 1: 0.49919557571411133
INFO:root:Sample 2: 0.606634259223938
INFO:root:Sample 3: 0.6328783631324768
INFO:root:Sample 4: 0.5938654541969299
INFO:root:Sample 5: 0.289816290140152
INFO:root:Sample 6: 0.2865508496761322
INFO:root:Sample 7: 0.6063771843910217
INFO:root:Sample 8: 0.6033931970596313
INFO:root:Sample 9: 0.5737144947052002
INFO:root:Sample 10: 0.6372798681259155
INFO:root:Sample 11: 0.5346137881278992
INFO:root:Sample 12: 0.5788921117782593
INFO:root:Sample 13: 0.5837757587432861
INFO:root:Sample 14: 0.612902820110321
INFO:root:Sample 15: 0.6258988380432129
INFO:root:Sample 16: 0.6790519952774048
INFO:root:Sample 17: 0.6715947389602661
INFO:root:Sample 18: 0.5604020953178406
INFO:root:Sample 19: 0.425453782081604
Traceback (most recent call last):
  File "/home/lael.alhalawani/python/finetuning_v2/run.py", line 20, in <module>
    score = trans_eval.evaluate(
            ^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/python/finetuning_v2/evaluator/translation_evaluator.py", line 29, in evaluate
    output = self._generate_evaluation(text=text, translation=translation)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/python/finetuning_v2/evaluator/translation_evaluator.py", line 20, in _generate_evaluation
    output = self.model(**encoded_text)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/.cache/huggingface/modules/transformers_modules/vince62s/wmt23-cometkiwi-da-roberta-xl/7db83b33c1432adcd0d4ea75dc39246ffeef8e1a/modeling_xlm_roberta_xl.py", line 1514, in forward
    outputs = self.roberta(
              ^^^^^^^^^^^^^
  File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/.cache/huggingface/modules/transformers_modules/vince62s/wmt23-cometkiwi-da-roberta-xl/7db83b33c1432adcd0d4ea75dc39246ffeef8e1a/modeling_xlm_roberta_xl.py", line 800, in forward
    embedding_output = self.embeddings(
                       ^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/.cache/huggingface/modules/transformers_modules/vince62s/wmt23-cometkiwi-da-roberta-xl/7db83b33c1432adcd0d4ea75dc39246ffeef8e1a/modeling_xlm_roberta_xl.py", line 121, in forward
    position_embeddings = self.position_embeddings(position_ids)
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/sparse.py", line 163, in forward
    return F.embedding(
           ^^^^^^^^^^^^
  File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/functional.py", line 2264, in embedding
    return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
IndexError: index out of range in self

Do you have any idea what might be causing these errors? How do I get to a point when lengths are not matching?
Is there some cache that I need to clear like pytorch cache or something else is causng this issue?

It always happens after 20 samples, doesn't matter if i test 0-19 or 100-119.

Thank you and kind regards!

If I use XLMRobertaXLForSequenceClassification i get this error

Traceback (most recent call last):
File "/home/lael.alhalawani/python/finetuning_v2/run.py", line 21, in
score = trans_eval.evaluate(
^^^^^^^^^^^^^^^^^^^^
File "/home/lael.alhalawani/python/finetuning_v2/evaluator/translation_evaluator.py", line 29, in evaluate
output = self._generate_evaluation(text=text, translation=translation)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lael.alhalawani/python/finetuning_v2/evaluator/translation_evaluator.py", line 20, in _generate_evaluation
output = self.model(**encoded_text)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py", line 1155, in forward
outputs = self.roberta(
^^^^^^^^^^^^^
File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lael.alhalawani/miniconda3/envs/p311_phi3_finetuneing/lib/python3.11/site-packages/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py", line 767, in forward
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: The expanded size of the tensor (519) must match the existing size (514) at non-singleton dimension 1. Target sizes: [1, 519]. Tensor sizes: [1, 514]

I thought it could be the cuda chache that leaves some residuals, but clearing it didn't help. Running reload_model method also doesn't help.


from transformers import XLMRobertaTokenizerFast, AutoModel
import logging as log
import torch
import gc
log.basicConfig(level=log.INFO)

model_id = "vince62s/wmt23-cometkiwi-da-roberta-xl" # it's a modified unbabel model to use default Roberta Architecture


class TranslationEvaluator:
    def __init__(self):
        log.info(f"Preparing Translation Evaluation model: {model_id}")
        self.model_id = model_id
        self.tokenizer = XLMRobertaTokenizerFast.from_pretrained(self.model_id, trust_remote_code=True)
        self.model = AutoModel.from_pretrained(self.model_id, trust_remote_code=True)
        log.info(f"Model loaded.")

    def _generate_evaluation(self, text:str, translation:str):
        input_text = f"{text}</s></s>{translation}"
        encoded_text = self.tokenizer(input_text, return_tensors='pt')    
        output = self.model(**encoded_text)
        return output
    
    def evaluate(self, text:str, translation:str) -> float:
        """
        Evaluates translation between two languages. 
        Outputs a score between 0 and 1, where 0 means very bad and 1 perfect translation.
        Over 0.8 seems like a good translation.
        """
        output = self._generate_evaluation(text=text, translation=translation)
        return float(output[0][0][0])
    
    def reload_model(self):
        log.info(f"Reloading model {self.model_id}")
        self.model = None
        self.tokenizer = None
        gc.collect()
        torch.cuda.empty_cache()
        self.model = AutoModel.from_pretrained(self.model_id, trust_remote_code=True)
        self.tokenizer = XLMRobertaTokenizerFast.from_pretrained(self.model_id, trust_remote_code=True)
        log.info(f"Model reloaded.")



and here's the latest updated run.py

from evaluator import TranslationEvaluator
from data import preparer as prep
from data import extracted_samples_file as samples_file
from data import LanguageKeys as LK
import torch

import logging as log
log.basicConfig(level=log.INFO)

samples_file = prep.load_json(samples_file)
trans_eval = TranslationEvaluator()
log_file = './scoring/scores.json'

eval_n_samples = 21
start_at = 19

scores = {}
for i in range(len(samples_file[start_at:start_at+eval_n_samples])):
    en = samples_file[i][LK.en_ie]
    pl = samples_file[i][LK.pl_pl]

    try:
        score = trans_eval.evaluate(
            text=en,
            translation=pl
        )
    except IndexError as e:
        log.warn("Error during evaluation. Reloading model and retrying.")
        trans_eval.reload_model()
        score = trans_eval.evaluate(
            text=en,
            translation=pl
        )
    scores[i] = score
    log.info(f"Sample {i}: {score}")


prep.save_json(
    data=scores,
    save_path=log_file
)

Still the same error of IndexError index out of range in self

Sorry I don't have time to debug.
Instead I implemented (and am using) this: https://github.com/eole-nlp/eole/tree/main/recipes/cometkiwi
it is faster more versatile.

vince62s changed discussion status to closed

Sign up or log in to comment