Phi-2-psy
Phi-2-psy is a merge of the following models:
π Evaluation
The evaluation was performed using LLM AutoEval on Nous suite.
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
phi-2-psy | 34.4 | 71.4 | 48.2 | 38.1 | 48.02 |
phixtral-2x2_8 | 34.1 | 70.4 | 48.8 | 37.8 | 47.78 |
dolphin-2_6-phi-2 | 33.1 | 69.9 | 47.4 | 37.2 | 46.89 |
phi-2-orange | 33.4 | 71.3 | 49.9 | 37.3 | 47.97 |
phi-2 | 28.0 | 70.8 | 44.4 | 35.2 | 44.61 |
𧩠Configuration
slices:
- sources:
- model: rhysjones/phi-2-orange
layer_range: [0, 32]
- model: cognitivecomputations/dolphin-2_6-phi-2
layer_range: [0, 32]
merge_method: slerp
base_model: rhysjones/phi-2-orange
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π» Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained("vince62s/phi-2-psy", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("vince62s/phi-2-psy", trust_remote_code=True)
inputs = tokenizer('''def print_prime(n):
"""
Print all primes between 1 and n
"""''', return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 62.80 |
AI2 Reasoning Challenge (25-Shot) | 60.84 |
HellaSwag (10-Shot) | 75.52 |
MMLU (5-Shot) | 57.57 |
TruthfulQA (0-shot) | 48.22 |
Winogrande (5-shot) | 75.45 |
GSM8k (5-shot) | 59.21 |
- Downloads last month
- 86
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for vince62s/phi-2-psy
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard60.840
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard75.520
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard57.570
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard48.220
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard75.450
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard59.210