vihealthbert-w_mlm-ViMedNLI

This model is a fine-tuned version of demdecuong/vihealthbert-base-word on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1156
  • Accuracy: 0.8341

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 19161
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 30000

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.5327 10.5263 1000 2.7528 0.5890
1.9051 21.0526 2000 1.4678 0.7783
1.1194 31.5789 3000 1.1543 0.8020
0.831 42.1053 4000 1.0972 0.8147
0.6805 52.6316 5000 0.9968 0.8256
0.5937 63.1579 6000 1.0310 0.8243
0.5258 73.6842 7000 1.1045 0.8151
0.4569 84.2105 8000 1.0393 0.8254
0.4007 94.7368 9000 1.0684 0.8217
0.3632 105.2632 10000 1.1223 0.8182
0.3343 115.7895 11000 1.1048 0.8230
0.2998 126.3158 12000 1.0996 0.8218
0.2817 136.8421 13000 1.0880 0.8320
0.2568 147.3684 14000 1.1189 0.8216
0.2396 157.8947 15000 1.1026 0.8267
0.219 168.4211 16000 1.1284 0.8241
0.2028 178.9474 17000 1.1205 0.8243
0.1927 189.4737 18000 1.1104 0.8313
0.1841 200.0 19000 1.0284 0.8348
0.1687 210.5263 20000 1.1662 0.8266
0.1627 221.0526 21000 1.1330 0.8278
0.1564 231.5789 22000 1.1413 0.8265
0.1483 242.1053 23000 1.1836 0.8246
0.1439 252.6316 24000 1.2169 0.8179
0.1396 263.1579 25000 1.1871 0.8266
0.1364 273.6842 26000 1.1696 0.8301
0.1314 284.2105 27000 1.1557 0.8324
0.1295 294.7368 28000 1.1712 0.8298
0.1296 305.2632 29000 1.1821 0.8273
0.1251 315.7895 30000 1.1567 0.8262

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for vimednli/vihealthbert-w_mlm-ViMedNLI

Finetuned
(3)
this model