XLM-RoBERTa-large-XNLI-ANLI
XLM-RoBERTa-large model finetunned over several NLI datasets, ready to use for zero-shot classification.
Here are the accuracies for several test datasets:
XNLI-es | XNLI-fr | ANLI-R1 | ANLI-R2 | ANLI-R3 | |
---|---|---|---|---|---|
xlm-roberta-large-xnli-anli | 93.7% | 93.2% | 68.5% | 53.6% | 49.0% |
The model can be loaded with the zero-shot-classification pipeline like so:
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="vicgalle/xlm-roberta-large-xnli-anli")
You can then use this pipeline to classify sequences into any of the class names you specify:
sequence_to_classify = "Algún día iré a ver el mundo"
candidate_labels = ['viaje', 'cocina', 'danza']
classifier(sequence_to_classify, candidate_labels)
#{'sequence': 'Algún día iré a ver el mundo',
#'labels': ['viaje', 'danza', 'cocina'],
#'scores': [0.9991760849952698, 0.0004178212257102132, 0.0004059972707182169]}
- Downloads last month
- 860
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.