Upload 4 files
#1
by
John6666
- opened
- classes.json +1 -0
- example.py +22 -0
- image.jpg +0 -0
- model.onnx +3 -0
classes.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"train": 0, "seaplane": 1, "motorbus": 2, "airplane": 3, "stair": 4, "bicycle": 5, "bus": 6, "car": 7, "crosswalk": 8, "hydrant": 9, "motorcycle": 10, "mountain": 11, "stairs": 12, "tow truck": 13, "traffic light": 14, "traffic sign": 15, "truck": 16}
|
example.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# ONNX for image classification model
|
3 |
+
|
4 |
+
import onnxruntime as ort
|
5 |
+
import numpy
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
ort_sess = ort.InferenceSession('model.onnx')
|
9 |
+
classes = [ "train" , "seaplane" , "motorbus" , "airplane" , "stair" , "bicycle" , "bus" , "car" , "crosswalk" , "hydrant" , "motorcycle" , "mountain" , "stairs" , "tow truck" , "traffic light" , "traffic sign" , "truck" , ]
|
10 |
+
|
11 |
+
img = Image.open("image.jpg").convert('RGB')
|
12 |
+
img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS)
|
13 |
+
inp_numpy = numpy.array(img)[None].astype('float32')
|
14 |
+
|
15 |
+
|
16 |
+
class_scores = ort_sess.run(None, {'input': inp_numpy})[0][0]
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
print("")
|
21 |
+
print("class_scores", class_scores)
|
22 |
+
print("Class : ", classes[class_scores.argmax()])
|
image.jpg
ADDED
model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75b984b8df7c427254966dfd08b057a96f11adc01894772a37109463449552f0
|
3 |
+
size 16196546
|